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An attempt is made to formulate a set of requirements for simulation and modelling of relaxation in dense media. Each
requirement is illustrated by examples of numerical simulation of particles with different types of interaction given by soft-
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1. Introduction

Molecular dynamics (MD) modelling and simulation is

one of the most important and effective methods in the

modern computational physics of classical dense media.

However, most of the papers where MD method is

involved are devoted to the studying of equilibrium

systems [1–6]. At the same time one might expect that

MD method could be a powerful tool for studying non-

equilibrium states and relaxation phenomena in dense

many-particle systems. In this connection, we would

mention studies of relaxation to equilibrium in two-

component two-temperature non-ideal plasmas [7–11],

damping oscillation regime in one-component non-ideal

plasmas [12], recombination relaxation in ultracold

plasmas [13–15], melting front velocity [16], spontaneous

decay of a superheated or stretched crystal [17–20],

relaxation of SH radical in solid krypton [21], protein

folding [22], relaxation in shock wave front [23–26].

Any conventional equilibrium MD simulation starts

from more or less arbitrary initial conditions. Then

different approaches are applied to equilibrate the system.

Only subsequent equilibrium runs are used to obtain useful

information. The objective of the simulation of relaxation is

of the opposite sense, i.e. to get the information from the

non-equilibrium part of the MD run, from that part which is

discarded and is not used in equilibrium MD simulations. It

is evident that the requirements for the simulation and

modelling of the relaxation should differ from those for the

equilibrium ones.

Modelling and simulation of relaxation is a relatively

new sector of computer physics where the standard of

approaches, models and numerics has not yet been

estblished. This paper contributes to the development of

this standard. We use the experience which we gained

from simulation of particular relaxation processes

[8–11,17–20].

It should be noted that we deliberately use both terms:

“simulation” and “modelling”. Simulation means an

implementation of a numerical scheme while modelling

means choices of the initial and boundary conditions,

definitions of the ensemble of initial non-equilibrium states,

choices of the particle number, etc. Developing of procedures

to measure relaxation related properties also belongs to

modelling.

In order to emphasize the difference between equilibrium

and non-equilibrium cases we start with the section where

we present briefly the standard of MD modelling and

simulation of equilibrium dense media. Then we proceed to

the presentation and discussion of different items of the

standard of MD modelling and simulation of relaxation:

(a) the choice of the initial state and sampling of the

ensemble of initial states; (b) the question of whether there

are any features of the relaxation processes which are

ensemble-independent; (c) the methods to analyse state of

the system at a given moment of time; (d) the possibility of
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measuring values, which need averaging over a relatively

long period of time, for a non-stationary case. A relaxation

process can be too long to be simulated by MD in particular

for multi-scale systems; some recipes for such cases are

given in the last section. All items of the standard are

summarized in the conclusions.

To demonstrate both universal and particular features of

the simulation and modelling, three examples of the

relaxation in very dissimilar multi-scale systems are

presented in this paper: (i) equilibration of electrons and

ions in a non-isothermal non-ideal plasma; (ii) decay of

metastable superheated crystals at both stationary heating

and stationary temperature, their lifetime and subsequent

nucleation processes; (iii) void formation in a crystal

under negative pressures.

2. Modelling and simulation of equilibrium dense

media

2.1 Equilibration

Initial conditions are chosen usually in the simplest way, for

example random or crystal sites for initial positions of atoms.

Then different approaches are applied to minimize the

relaxation period and to achieve the equilibrium parameters

needed. The fact that MD run proceeds to the stationary

regime is checked by various criteria from the trivial, e.g.

constance of average kinetic energy of particles, to more and

more sophisticated, e.g. stationary behaviour of the root

mean square displacement for equilibration and sampling of

a biomolecule [27–32].

2.2 Boundary conditions and particle numbers

Boundary conditions should reflect the physical system to

be studied: a uniform infinite volume, a surface, phase

separations, clusters, etc.

The choice of particle number N is performed according

to spatial and temporal requirements and restrictions.

The length of the simulation box edge L should be

greater or much greater than the correlation length. Since

there is a hierarchy of correlation lengths the choice of N

restricts us to the study of a definite set of correlations. The

same is valid for the restriction of the wave vector of

fluctuations (plasma waves, phonons, etc.) for a given N.

Another requirement is related to the contribution of

interparticle interactions at distances outside the simu-

lation box. This contribution should not be remarkable

otherwise periodic boundary conditions are able to impose

a correlation which in fact does not exist.

According to the temporal restrictions the squared lengthL 2

should be greater than the diffusion coefficient multiplied by

the correlation time. Another restriction says that L/vs, where

vs is the sound velocity, should be greater than the correlation

time under study; the N-dependence in MD calculations of

velocity autocorrelation functions is demonstrated in [33].

Since there is also a hierarchy of correlation times the choice of

N restricts us to study a definite set of time correlations.

The requirements to N mentioned above are related to

the simulation of uniform media. Apparent additional

requirements appear for the MD simulation of surfaces,

phase equilibria, etc.

2.3 Numerical integration

Numerical integration time step Dt should be much

smaller than the inverse value of the maximum oscillation

frequency in the system. Another physical restriction

strongly limits Dt by the characteristic length of the

remarkable variation of the potential energy divided by

the particle thermal velocity. Other restrictions are of the

computational character, cf. [34–36].

The duration of MD run tmax defines the accuracy of

averaging which is not less than ,M 21/2, where

M ¼ tmax/tm and tm is a dynamic memory time [34–36]

(see below). Averaging over particles if available increases

accuracy by a factor N 21/2. Grows of N reduces the

performance by a factor of N 2 (or at least N logN) for

long-range potentials and by a factor of N for short-range

potentials being less effective than averaging over an

ensemble.

3. Modification of equilibrium requirements for non-

stationary case

All the above mentioned items are to be substituted or at

least supplemented and modified to study relaxation

phenomena. Consider first the requirements which can be

modified.

The requirements to the boundary condition are of the

same character. Additional difficulties appear when non-

stationary boundary conditions are needed, e.g. at the

simulation of shock wave propagation [23–26], etc.

Correlation lengths do not remain constant during the

relaxation. Account of these lengths is important when

cooperative phenomena are considered, e.g. nucleation or

plasma waves. The MD box size should be greater than the

maximum correlation length which might appear during

the relaxation process. Appearance of a local non-

equilibrium state in the small subsystem (N & 103

particles) of a uniform equilibrium system was observed

in MD simulations [37].

Numerical integration with a variable time step is

applied if the relaxation includes a dramatic increase of

velocities of some particles [14]. Pair distribution function

could be a sensitive tool to detect particles which could

approach potentially forbidden small distances due to

insufficiently small time step.

The equilibration procedures used in conventional

equilibrium MD simulations are more or less artificial.

Their main objective is to achieve equilibrium by any

means as fast as possible. Therefore these procedures

make no sense to study real relaxation processes. The

averaging procedure should be substituted by another one

as well. The new requirements for equilibration, averaging

and diagnostics are considered in the subsequent sections.
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4. Initial state: ensemble of initial states

The choice of the initial state cannot be an arbitrary one

as it should correspond to the physical problem we

would like to study. The physical system is modelled with

respect to the boundary conditions, particular non-

equilibrium conditions and the minimum particle number

which is required to reproduce the main features of the

relaxation process studied.

One initial state is not sufficient as a rule to achieve

the satisfactory accuracy. So an ensemble of initial states is

needed to obtain a number of MD runs and perform the

averaging of the results. Each microscopic state in

the ensemble should differ from each other significantly but

all of them are to be equivalent with respect to the macroscopic

non-equilibrium state under study. The last requirement needs

some art and can be checked by the following criteria. The

increase of the number I of initial states increases the accuracy

of averaging as
ffiffi
I

p
and does not shift the mean value.

4.1 Non-equilibrium plasmas

Let us consider several examples of modelling of initial states

of non-equilibrium strongly coupled (non-ideal) plasmas.

The first example is modelling of relaxation in

non-ideal plasmas created after ultrafast laser heating,

e.g. by a femtosecond pulse. The following initial

conditions can be suggested for this case:

. ion coordinates are taken to be random for a gaseous

target, or crystal-like for a solid target;

. ion velocities are taken to be Maxwellian for initial

temperature of the target, e.g. 300K, or ionvelocities can be

assumed to be zero in the case of a very strong laser field;

. electron coordinates are taken to be random in the vicinity

of ions;

. the absolute values of electron velocities satisfy

the equation of energy conservation U þ ðmev
2=2Þ

¼ n�v2 I, where v is the electron velocity, n�v is

absorbed energy, I is the ionization potential, U is the

potential energy of particle interaction.

The random choice of the particle coordinates and

velocity directions gives us a perfect opportunity to generate

an ensemble of equivalent but different initial state.

The initial positions of electrons can be assigned

randomly or taken from an equilibrium MD run. In the first

case one should apply a Monte–Carlo procedure to

achieve given value of U. In the second case the average

value of U is guaranteed to be the same as in the

equilibrium trajectory.

Another example is a relaxation in a shock-compressed

plasma. To get the initial distributions of ion velocities

and coordinates it is necessary to simulate a smooth

front formation according to [23–26]. Possible initial

conditions implies zero velocities of electrons.

Some simplified initial conditions are used in [9–11]. The

initial state for the coordinates of the particles are taken from

corresponding equilibrium simulations. The velocities are to

be changed according to the physical case modelled.

Non-equilibrium plasma created by an instantaneous

change of Debye radius is considered in [38].

4.2 Metastable states

Deploying MD technique one can investigate metastable

states that are relatively close to the boundary of stability

of the given phase. Their lifetimes are short enough to be

within the computational capabilities.

One MD run gives us a value of the particular lifetime for a

given initial configuration in the phase space. Then averaging

should be performed over the ensemble of initial configur-

ations. To prepare such an ensemble of microscopic

configurations we should fix the macroscopic conditions

that determine the degree of metastability, e.g. the values

of temperature and density in the case of superheating/

undercooling. Then MD trajectories calculated from each of

the initial conditions of the ensemble give us the set of the

lifetime values. Average over lifetimes results in a mean value

�twhich is specific for the given degree of metastability and the

volume studied.

For example, there are several ways to obtain the ensemble

of microscopic configurations that correspond to the super-

heated crystal. One can start from a crystal at temperature

below the melting temperature heating it up to the desired

temperature. To prevent lattice disordering the artificial

constraints on the particle motion are applied. The particles

are bounded inside a sphere or the Wigner–Zeitz cell with

reflective walls. A quasi-equilibrium MD trajectory can be

calculated with these constraints. Then an ensemble of M

independent phase points can be taken from this trajectory as

an initial states for M runs without restrictions on particle

motion. Each run provides a lifetime as shown in figure 1.

The set of lifetime values can form a certain type

distribution, e.g. an exponential distribution if the metastable

phase decay goes as a Poisson random process (figure 2).

4.3 Parallel computations

In general, MD code is hard to parallelize because of many

network communications required for the force calculation

procedure. An alternative parallelizing algorithm is possible

in case of simulation of the relaxation. Since averaging over

initial states is required, the relaxation from different initial

states can be calculated in parallel. The network load is very

low in this case. Therefore the parallel algorithm should be

used to calculate the relaxation whereas the standard one is

used to obtain an ensemble of initial states.

The general idea of the parallel essence of MD simulations

of relaxation is illustrated in figure 3. The durations of parallel

relaxation MD runs in Set II can be equal to each other, as in

simulations of plasma relaxation, or not equal to each other,

as in the case of calculation of metastable state lifetime

distribution.Analternativeparallelprocedureof thegenerating

of the ensemble of relaxation MD runs is discussed in the next

section. However, it is more restricted in applications.
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5. Ensemble-dependence

Non-equilibrium states can differ for different ways of

excitation of the same media. Each non-equilibrium state

corresponds to a certain ensemble of initial states in

simulations. The problem is to distinguish quantities which

are ensemble-dependent, i.e. characterise both medium and

the way of excitation, from those which characterise the

medium and are independent of the way of excitation.

The inherent feature of MD systems is the Lyapunov

instability. Due to this instability there appears a dynamic

memory time tm which limits time interval when the Caushy

problem is valid for MD numerical integration. For times

greater than tm MD trajectory ‘forgets’ its initial conditions

and ceases to correlate with the hypothetical Newtonian

trajectory started from the same initial conditions [34–36].

We expect that the duration of ensemble-dependent part of

the relaxation correlates with tm.

5.1 Electron–ion relaxation

Ensemble-dependence can be illustrated by the results of MD

simulation of the non-ideal plasma. Such plasma is usually

characterised by a non-ideality (coupling) parameter G ¼

e2ð4pne=3Þ1=3=ðkBTÞ or the Debye number ND ¼

ðkTÞ3=2/ð3e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pne

pp
Þ, where T is the final temperature at

Figure 1. Left side of the plot: the temperature dependence on time during heating to the desired temperature when the restrictions on particle motion
are applied. Right side: three examples of MD runs without restrictions. Each of them gives the value of lifetime tj, j ¼ 1, 2,. . .M. (Results were obtained
for the Lennard–Jones system, N ¼ 500 particles, density 1.2s 23).

Figure 2. Distributions of lifetime values for two different
temperatures, m(t) is the number of MD runs, for which the
superheated solid decay happened in the time interval (t, t þ Dt). The
original lifetimes are given on two subplots: j is the number of the MD
run in figure 1 and t is the corresponding value of lifetime. Results were
obtained for the Lennard–Jones system with N ¼ 6912 particles, density
equals to 1.0s 23, M ¼ 30 MD runs, temperatures T ¼ 1.6097 (grey
distribution), T ¼ 1.5871 (white distribution). Solid lines correspond to
mðtÞ ¼ ðMDt=ð �t 2Þ expð2t= �tÞ, where Dt is the width of histogram bars.

Figure 3. Schematic picture of the inherent parallelism of MD
simulations of relaxation: I—a set of initial conditions (circles),
generated by a certain procedure (MD run, set of random phase space
coordinates, etc.); II—a set of independent relaxation MD runs, which
should be average by a procedure III. Triangles are the final points.
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the end of relaxation, ne is the number density of electrons. Let

us consider a fully-ionized two-component plasma of N

electrons and N singly ionized ions with masses m and M,

respectively. The particles exert each other with a quasi-

classical interaction potential such as ‘corrected Kelbg’

pseudopotential [39]. The number of ions in those particular

simulations isN ¼ 64–800. Choice ofN andN-independence

are discussed elsewhere [9,10].

The initial non-equilibrium state is characterised by

different temperatures of electrons Te and ions Ti. We used

the initial conditions where the velocities of electrons

or/and ions are equal to zero (see previous section for

details). The results of MD runs are averaged over an

ensemble of I ¼ 50–200 initial states. Provided the result

is N-independent, the relative error is given by 1=
ffiffiffiffiffiffi
NI

p

which agrees with direct calculation of normal statistical

deviation shown in plots by error bars. Exactly these error

bars correspond to the confidence coefficient 0.68. They

are not plotted if they are smaller than the size of the points.

As seen from figure 4 the relaxation is characterised by

initial oscillations at the first stage and by the subsequent

decrease of the difference between electron and ion

temperatures DT ¼ jTe 2 Tij where the values of Te and Ti

are the average kinetic energy of the particles

TðtÞ ¼ 1
2NI

PN;I
j;k mv2

jkðtÞ. The time here and below is

measured in units of the period of electron plasma

oscillations te ¼ 2p/vp, vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnee2=m

p
.

It follows from the Boltzmann equation that DT

, exp{2 t/tB}. This result is based on the assumption that

the collisions between the particles are statistically

independent. Therefore, it can describe only the stochastic

part of relaxation which does not depend on the initial

ensemble.

For a non-ideal plasma the exponential relaxation derived

from the Boltzmann equation is obtained only for an

asymptotic behaviour. The duration of the non-exponential

relaxation stage tnB which precedes the exponential one is

shown on figure 5 depending on the non-ideality parameter.

The value of tnB is almost independent of the mass ratio

provided that M/m $ 100 [11]. As seen from figure 5 the

value of tnBdepends on the initial conditions within the order

of magnitude but stays comparable with tm. This implies that

the non-exponential stage corresponds to the dynamic

relaxation while the exponential one corresponds to the

stochastic relaxation in agreement with statements

underlying the Boltzmann theory. In such a strongly

correlated plasma the time of the stochastization tm becomes

greater than the time between collisions [34] and the role of

non-exponential relaxation becomes significant.

5.2 Decay of a metastable phase

As already mentioned a set of lifetimevalues can be obtained

for the ensemble of the microscopic initial configurations

corresponding to the given macroscopic condition of the

metastable state.

Provided that �t . tm, MD runs with different integration

time steps even for the same initial configuration will result

in a set of different lifetimes [17,19]. Apparently after the

initial time tm the system ‘forgets’ its initial condition and

trajectories calculated with different time steps become

statistically independent. Since the value of the dynamical

memory time grows only logarithmically as the accuracy

of integration increases, it is practically impossible to

calculate the exact dynamic value of lifetime for the given

initial configuration if t . tm.

Using this fact one can estimate the value of the average

lifetime from calculations with different integration time

steps (figure 6). Such distributions are close to those obtained

Figure 4. Difference between mean kinetic energies of electrons and
ions DT ¼ jTe 2 Tij depending on time. Initial conditions:
Te(0) ¼ Ti(0) ¼ 0. The value of DT is normalized by the equilibrium
temperature Tequation In order to define tnB and the beginning of
exponential decay the long time scale relaxation is fitted by the dash
straight line. M/m ¼ 100.

Figure 5. Dependence of the duration of the non-exponential relaxation
stage tnB on the non-ideality parameter for different initial conditions:
Ti(0) ¼ 0—squares, Te(0) ¼ 0—rhombus, Te(0) ¼ Ti(0) ¼ 0—triangles.
The dynamical memory time tm—crosses, the solid line is the power fit
tm , G0.25.
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for the ensemble of different initial configurations discussed

above in figures 1–3.

6. Instantaneous diagnostics

New procedures are to be developed to find characteristics of

relaxation at a given moment of time, e.g. to find parameters

which qualitatively show the overall degree of deviation from

the Maxwellian velocity distribution and from the Gaussian

distribution of crystal particles in space. More details about

these deviations can be found from calculation of the

distributions themselves. This diagnostic can be applied

separately to different spatial regions in non-homogeneous

case.

6.1 Non-ideal plasma

First let us consider relaxation of velocity distribution

functions in a non-ideal plasma. It is suitable to choose initial

conditions like Te(0) ¼ Ti(0) ¼ 0 to observe all stages of

relaxation [9]. Heating of charges in this case is provided by

the decrease of the potential energy (disorder induced

heating). Thevelocity distribution functions for both electrons

and ions are presented in figure 7. At the first presented time

moment neither electrons nor ions have the equilibrium

distribution. Then at t u 0.6te the Maxwell distribution is built

up for electrons while ions are in the non-equilibrium state.

Finally, one will have two equilibrium distributions with

different temperatures at t u 15te, which then relax to the total

equilibrium with equal temperatures. All these plots were

obtained by averaging results picked up from different MD

runs which correspond to one ensemble of initial states.

Notice that the difference between average energies

of electrons and ions proceeds to the exponential decay after

t u 6te, i.e. earlier than the Maxwell distribution is built up

for ions. The equilibrium between potential and kinetic

particle energies of electrons and ions is achieved at

T u 100te for the case considered [9].

6.2 Decay of a metastable crystal at stationary
temperature

A condensed matter can exist at negative pressures. Such

states were observed experimentally, e.g. in [40]. States

under negative pressure are metastable ones, so they can

exist for only a limited period of time. They decay

spontaneously after that and result in formation of voids.

A system under study is a f.c.c. crystal of particles

interacting via Lennard–Jones potential UðrÞ ¼

4eððs=rÞ12 2 ðs=rÞ6Þ. Periodic boundary conditions are

used. The values of temperature T and number density r are

chosen for the simulation to obtain a state near the spinodal in

order its lifetime can be reached during the MD run. Initial

velocities are taken from the Maxwellian distribution.

The results of a certain example are presented in figure 8 for

time dependencies for T, pressure P and Lindemann

parameter dL ¼ kDr 2l=rnn; where kDr 2l is the displacement

of particles from the f.c.c. lattice sites averaged over all the

particles in the simulation box at the current time step, rnn

Figure 7. The energy spectra for electrons (bars) and ions (circles) at three moments of time corresponding to different stages of relaxation: (a) t ¼ 0.15
te; (b) t ¼ 0.58 te; (c) t ¼ 15 te. Solid and dashed line corresponds to the Maxwell distribution for electrons and ions calculated using the mean kinetic
energy. Te(0) ¼ Ti(0) ¼ 0, G ¼ 3.3, M/m ¼ 100.

Figure 6. Schematic picture of the inherent parallelism of MD
simulation of relaxation, following from the Lyapunov divergency of MD
trajectories. The set II and procedure III are the same as in figure 3, the set
I is reduced to only one point.
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is the nearest neighbor distance in the perfect lattice.

Parameters ar ¼ ð3=5ÞðkDr 4l=kDr 2l2Þ2 1 and av ¼

ð3=5ÞðkDv 4l=kDv2l2Þ2 1 show the degree of deviation

from the Gaussian distribution for particle displacements and

velocities respectively, ar ¼ av ¼ 0 for the Gaussian–

Maxwellian distribution). The metastable statewith stationary

T and P exists during , 275ðms2=1Þ1=2 which is much

greater than tm, then spontaneous decay starts. It takes only

few time units to form new more or less stationary state. The

non-zero value of av points to the fact that the Maxwellian

distribution is broken during the short decay period.

The pair radial distribution function, kinetic energy

distributions and particle structure cross-sections

are presented for the three time moments denoted by arrows.

The time t1 corresponds to the long-range order structure.

The structures at t2 and t3 reveal only short-range order.

The microscopic picture of the spontaneous decay is

presented in figure 9 for a larger simulation cell. It is evident

that the decay starts with the local disordering of the crystal

structure. The voids appear in the melted regions only at the

next stage of the decay. Another characteristic feature of

the decay is observed: the structure formed is strongly

non-uniform. At least three phase states can be distin-

guished: crystal clusters, disordered regions and voids. In

fact the final state of our MD run is not an equilibrium one,

since the pressure remains to be negative till the end of our

simulation.

6.3 Decay a metastable crystal at stationary heating

Superheated solid is a state of matter that can be realized

experimentally only under particular conditions of high rate

energy impacts and/or very low concentration of defects and

impurities which enables heterogeneous melting (see, e.g.

[41]).

Simulations starts from an initially ideal crystal

lattice. After 104 time steps the system is brought to the

equilibrium at the temperature below the melting tempera-

ture. Then the model crystal undergoes isochoric heating

at the constant rate _T ¼ 6 £ 1024ðe 3=ms2Þ1=2. The heating

is performed by velocity rescaling in the spirit of the

Berendsen thermostat technique. As heating is being

done (figure 10) the temperature of the model crystal

becomes higher than the melting temperature for the given

density Tm ¼ 1:25e. When temperature reaches T ¼ 1:52e

the crystal structure decays into fluid. Phase transformation

leads to a rapid change of the averaged potential energy U.

Structural transformations manifest themselves through

the changes of ar and dL. According to the Lindemann

criterion of melting dl equals to 0.12–0.13 for simple

Figure 8. The combined plot describing kinetics of the stretched solid spontaneous decay (rs 3 ¼ 1, N ¼ 4000, LJ units): (a) and (b)—temperature T
and pressure P dependencies on time t; (c)—time dependencies for Lindemann parameter dL, non-Gaussian parameters of particle displacements ar and
velocities av. Radial distribution functions g(r), kinetic energy distributions DN(E)/DE (compared with the Maxwellian distributions for the relevant
temperature) and particle structure cross-sections are presented for the three subsequent time moments.
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crystals at the melting temperature Tm. This relation holds

for the case considered. However, at T ¼ Tm no phase

transition appears but the crystal becomes superheated. The

value of dl can achieve a value as high as 0.4 before the

crystal decays. There is a peak on thear-dependence on time

which might correspond to emergence of collective modes in

the motion of particles. This phenomenon can be considered

as a precursor of the decay under heating. It does not produce

any effect on the dependence of potential energy on time,

however, Lindemann parameter proceeds to a faster increase

after this peak. After the decay the motion of particles

becomes irregular, so that ar vanishes and dL gets the

diffusion-like dependence on time. The loss of long range

order is well seen on the evolution of the radial distribution

function and on the orthogonal projections of the particle

structure in the simulation box.

The system evolution can be divided into three parts: (1)

heating and superheating up to the appearance of the

melting precursor; (2) emergence of collective modes in

the particle motion; (3) decay to the fluid state. The

process of the relaxation in the case of the superheated

crystal decay is connected with homogeneous nucleation

that allows to apply the formalism of the classical

nucleation theory (see [17,18] for details).

7. Time-averaged diagnostics

Averaging over a relatively long period of time is also needed

to obtain, e.g. the values of dynamic structure factor.

Usage of MD for obtaining physical properties of a

stochastic system always imply averaging of the calculated

properties over a representative set (usually more than 30) of

independent system configurations. For the properties that are

characterised by time, or correlations in time the averaging

can be performed along the MD trajectory. Each two

measurements of some physical property along the

equilibrium trajectory which are separated in time by the

interval greater than the correlation time of the system are

considered statistically independent. The typical example of

the important correlation property for a many-particle system

is the dynamic structure factor (DSF), which is the space and

time Fourier transform of density-density correlation

function. DSF characterises the intensity of collective

oscillations in the system at a certain frequency and wave

vector. The measurement of DSF in the MD experiment

requires long MD trajectories because the determination of

DSF includes the positions of all particles during some period

of time and no averaging over particles can be performed.

Averaging over time along the MD trajectory is the most

convenient way to obtain DSF. It is also theway most effective

computationally, because Fast Fourier Transform procedure

can be used to obtain the result in frequency space.

Averaging over time is a serious problem for non-

equilibrium states, where the measured property can

significantly change its value during the time evolution.

We note that this is a technical problem connected with

impossibility of averaging over long time, the property

itself must have, however, its instantaneous value with

defined physical meaning. To use time averaging in these

situations the procedures are suggested [10,42] which

imply freezing of the instantaneous non-equilibrium state

for the period of measurement. The idea is to introduce the

energy exchange with an external bath keeping constant

the non-equilibrium excitation. It is necessary to check

that this procedure does not transform the non-equilibrium

state during the period of measurement. This external

source is switched on temporarily, and if further evolution

of the system needs to be investigated, it is switched off

and the relaxation continues as if there were no period of

freezing. Below we illustrate the freezing technique using

the example of DSF study of beam-excited non-

equilibrium electron–ion plasma. A permanently deve-

loping non-equilibrium is caused by an electron beam

propagating through the plasma with constant velocity.

This type of non-equilibrium states exists in some

experiments when large electron flows arise in plasma.

The aim of this simulation is to detect the excitation of

non-equilibrium collective plasma oscillations which are

permanently present in the case of beam-excited plasma.

Figure 9. The microscopic picture of the slab inside the MD cell for three moments of time corresponding to the initial crystal structure, start of the
decay process and final non-uniform structure. The colour of particles shows the degree of disordering. N ¼ 32,000, r ¼ 0.8s 23.
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For the MD simulation a model of Hydrogen plasma

(with realistic electron to ion mass ratio) consisting of

400 particles placed in the cell with periodic boundary

conditions is used. The number of particle chosen

is sufficient to study oscillations at plasma frequencies

[11], and this choice does not influence very much the results

of all simulations presented below. Interaction between

electrons and ions is described by the pair Coulomb potential

modified at small separations [8,11,39] to exclude for

quantum bound states. Particles of the same type interact via

the bare Coulomb potential. Equilibrium state prepared by

Monte–Carlo procedure is used as initial condition for the

MD experiment. The initial equilibrium parameters for the

plasma are G ¼ 1, T ¼ 30,000K.

After preparing the system in equilibrium statewith desired

parameters, a number of extra electrons simulating the beam

is driven through the system in one direction with constant

velocity vector. The trajectories of these extra electrons are

randomly selected for each extra electron entering the

simulation cell and reselected when it crosses the cell

boundary. Extra electrons interact with plasma particles, but

their own velocities and trajectories are kept unchanged, once

selected. The typical parameters of the beam are: density

nb ¼ 0.03ne, velocityV ¼ 3vT, where ne is electron density in

the plasma and vT is the equilibrium thermal velocity of

electrons. The beam leads to steady input of energy and

heating of the system. Electrons heat up more quickly than

ions, therefore two-temperature plasma arises at the initial

stage of beam excitation.

The superthermal excitation of plasma oscillations can be

detected by comparing dynamical structure factors (DSF) of

the plasma under consideration [8,10] for different k-vectors

with the ones characterizing equilibrium case. The oscil-

lations show up as enhanced and shifted peaks of the DSF.

At the initial stage of plasma excitation by beam the

temperature of the electronic component grows too rapidly

to allow direct measurement of DSF in MD experiment,

which requires averaging over relatively long period of

time without significant change of the system character-

istics. To overcome this difficulty, the idea of energy

exchange with external reservoir is applied to withdraw the

energy from the system and keep the average electronic

temperature constant for the time of DSF measurement.

At first the beam-excited system is allowed to propagate

Figure 10. The combined plot describing kinetics of the crystal decay under constant rate heating _T ¼ 6 £ 1024ðe 3=ms 2Þ1=2 (rs 3 ¼ 1, N ¼ 6912, LJ
units): (a) and (b)—current temperature T and pressure P dependencies on time t (dashed line correspond to the equilibrium melting temperature at the
current pressure Tm(P)); (c)—time dependencies for Lindemann parameter dL and non-Gaussian parameter of particle displacements ar. Radial
distribution functions g(r), kinetic energy distributions DN(E)/DE (compared with the Maxwellian distributions for the relevant temperature) and
orthogonal projections of particle structure in the MD cell are presented for four subsequent time moments.
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until its temperature reaches some value TI. Then the

propagation of the system continues with additionally

applied velocity scaling at every time step, not allowing the

electronic temperature to exceed TI. This is performed

during the time, sufficient to measure DSF. The resulting

DSF characterises the level of plasma excitation by the

beam reached at the temperature TI.

To check that the scaling procedure does not change the

properties of the system we perform energy freezing

consequently first at some intermediate temperature TIII and

then after release of the velocity scaling at temperature TII.

We compare the measurements of system characteristics,

including velocity distributions and radial correlation

functions with the simulation were the system was allowed

to propagate directly to TI ¼ TII without intermediate

freezing. The time evolution of the component temperatures

of the system during this test simulation is shown in the

figure 11. The check does not show any significant

differences between two measurements.

An example of DSFs measured at temperatures

Tm1 ¼ 1.2T0 ¼ 36,000K and Tm2 ¼ 1.8T0 ¼ 54,000K is

shown in figure 12(a)–(c) compared with the equilibrium

DSF for different k-vectors. As expected, in the case of beam

excitation the DSFs show remarkable change of intensity in the

peak regions.

8. Multi-scale approaches

Relaxation process can be too long to be simulated by MD

in particular for multi-scale systems. In this case a

simplified model of the system can be used to increase

simulation speed. The results of this model are to be scaled

with the help of analytic expressions. Two examples are

briefly given below.

8.1 Dependence of the exponential relaxation time on
plasma properties

Unlike the non-exponential relaxation stage in non-ideal

plasma the exponential one can be directly compared with

Figure 11. Checking the influence of velocity scaling procedure: the DSF
measured for the system in state II (which was subject to scaling procedure at
state i with intermediate temperature) is the same as for the system in state I.

Figure 12. Dynamical structure factors for different stages of plasma
excitation drawn for three k-vectors starting from minimal allowed in
the MD cell. (a) k ¼ 0:34R21

D ¼ 0:78 £ 10210 m; (b) k ¼ 0:49R21
D

¼ 1:1 £ 10210 m; (c) k ¼ 0:59R21
D ¼ 1:4 £ 10210 m, where RD is Debye

length in equilibrium. The same arbitrary units are used for (a)–(c). Initial
conditions: T0 ¼ 30,000K, G0 ¼ 1. Beam parameters: nb/ne ¼ 0.03,
vb/vT ¼ 3.
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known analytical results for an ideal plasma. The

dependence of characteristic relaxation time tB on the

mass ratio is shown in figure 13. As seen, different initial

conditions result in close values of tB(M). Lower relaxation

time for the crystal-like initial configuration of ions is caused

by an additional heating of ions due to reconfiguration and

correlation build up in the ionic subsystem. The mass

dependence can be fitted by the power fit tB/te , (M/m)a in

all cases in figure 13. The dependence of a on the non-

ideality parameter can be fitted by the parabolic curve

aðGÞ ¼ 1 2 0:15Gþ 0:035G2; 0 , G , 4: ð1Þ

The dependencies of tB on the ion mass and G can be

separated as follows

tBðG;MÞ ¼ t1
BðGÞ

M

m

� �aðGÞ

: ð2Þ

The result for t1
BðGÞ is presented in [11]. As seen the

initial conditions do not affect t1
B significantly. In the weak

non-ideality region the MD results are in a good

agreement with the Landau theory [43]

t*
B ¼

3

16

ðmTi þMTeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmM

p
1

e4neLe

; ð3Þ

where Le is the Landau logarithm. For the ideal plasma

equation (3) gives a ¼ 1 while MD simulations of the

non-ideal plasma show that a is usually smaller than unity.

One can estimate the relaxation times in real

experimental conditions using given G-dependence and

mass-dependence. The error of determination of a(G) is

about ja ¼ 5%. The corresponding error of the extra-

polation of relaxation times, e.g. for aluminium is jt ¼

logðMr=MÞja ¼ 40%; where Mr/M is the ratio between

real and model ion masses. The obtained precision is

enough for comparison by an order of magnitude.

8.2 Nucleation

The value of the average lifetime �t ¼
PM

j¼1tj=M of the

metastable state for a given degree of metastability allow one to

obtain the homogeneous nucleation rate [19]. The dependence

of the homogeneous nucleation rate on temperature following

the classical nucleation theory (CNT) has the form

JðTÞ ¼ J0 exp
2W

kBT

� �
; ð4Þ

where kB is the Bolzmann constant, W is the energy barrier for

nucleation. The MD results for the nucleation rate at various

temperatures can be fitted by this formula to obtainWand J0 in

the certain temperature range (e.g. figure 14). Then these

estimates can be included in the meso- or macroscopic

simulation on larger length- and timescales that can not be

directly achieved in MD simulation (e.g. [44]).

9. Conclusions

At attempt is done to formulate standard requirements to

MD modelling and simulation of relaxation processes in

dense media, which would be more or less universal and

independent of the physical systems studied. The main

features are considered which are new with respect to the

simulations of equilibrium systems:

. averaging over MD relaxation runs started from an

ensemble of initial non-equilibrium states which

correspond to the physical problem under study;

. separate consideration of the initial ensemble-dependent

stage of relaxation and subsequent stage which might

be ensemble-independent and remind of Boltzmann

exponential relaxation;

Figure 13. The dependence of the exponential relaxation times on the
mass ratio for different initial conditions: Ti(0) ¼ 0 (quasi-random)—
squares, Ti(0) ¼ 0 (crystal)—circles, Te(0) ¼ 0—rhombus. Strait lines
correspond to the power fits tB , (M/m)a. G ¼ 1.28.

Figure 14. Results of MD calculation of homogeneous nucleation
rate in the superheated crystal (Lennard–Jones system, density
N/V ¼ 1.0s 23): symbols are the values of the homogeneous nucleation
rate J ¼ ðV �tÞ21 calculated for different temperatures T and system sizes
N: squares—N ¼ 500, triangles—N ¼ 6912. V is the volume of the
simulation cell. Dashed line is the best fit using equation (4):
ln J ¼ 28.9 £ 103/T þ 42.3.
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. calculation of dynamical memory time tm and comparison

of tm with the duration of the ensemble-dependent stage of

relaxation;

. instantaneous and time-averaged measurement procedures

which are specific for studying of relaxation processes;

. analytical extrapolation approaches to estimate relaxation

times which are too long to be simulated by MD, especially

for multi-scale systems.

Three examples of relaxation are considered: equili-

bration of electrons and ions in non-ideal plasmas, decay

of metastable crystals under superheating or stretching.

Non-exponential relaxation is observed for different initial

conditions and its transition to the exponential regime is

confirmed for plasma; dynamic and stochastic stages of

the relaxation are shown. Deviation from Maxwellian

distribution is observed for different relaxation processes.

Nucleation and void formation are simulated.
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