
John von Neumann Institute for Computing

Long-Range Interactions in
Many-Particle Simulation

Paul Gibbon, Godehard Sutmann

published in

Quantum Simulations of Complex Many-Body Systems:
From Theory to Algorithms, Lecture Notes,
J. Grotendorst, D. Marx, A. Muramatsu (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 10, ISBN 3-00-009057-6, pp. 467-506, 2002.

c© 2002 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume10

Long-Range Interactions in Many-Particle Simulation

Paul Gibbon and Godehard Sutmann

John von Neumann Institute for Computing
Central Institute for Applied Mathematics

Research Centre Jülich, 52425 Jülich, Germany
E-mail: {p.gibbon, g.sutmann}@fz-juelich.de

Numerical algorithms for accelerating the computation of N -body problems dominated by
long-range inter-particle forces are reviewed. For periodic systems, the optimised Ewald lattice
sum with an O(N3/2) scaling forms a reference standard against which the newer, potentially
faster Particle-Particle Particle-Mesh and Fast Multipole Methods can be measured. The more
general N -body problem with arbitrary boundary conditions is also described, in which various
multipole methods are now routinely used instead of direct summation for particle numbers in
excess of 104. These techniques are described in a tutorial fashion and rough comparisons given
of their respective computational performance on scalar and parallel machine architectures.

1 Introduction

Until relatively recently, the general solution of the N-body problem – computing the tra-
jectories of many mutually interacting particles – was considered intractable, except for
small systems, or for particle assemblies in which the interaction potential is either physi-
cally or artificially truncated. Over the past half century, however, our definition of ‘small’
has stretched from a few dozen to several thousand bodies, thanks to advances in comput-
ing power. On the other hand, this increase in manageable system size is not as dramatic
as one might expect from Moore’s ‘Law’, in which processing power has doubled every 18
months or so since the 1960s.

A brief inspection of the typical N-body force law will reveals why this is so. Consider
a classical system of N bodies with charges qi and masses mi interacting via a central
potential V :

mi
d2

ri

dt2
= −qi∇iV i = 1, 2, 3 ... N, (1)

where

V (ri) =

N
∑

j 6=i

qj

| ri − rj | . (2)

To compute one iteration of the ensemble trajectory ri(t) described by the equation of
motion (1), we require N(N − 1) operations. With the aid of Newton’s third law (ac-
tion=reaction), we can exploit the symmetry of the potential to reduce the operation count
by one half, but this still leaves us with an asymptotic scaling of O(N 2) for large N . In
other words, we need a 100-fold increase in computing power in order to increase the simu-
lation size by an order of magnitude. This dispiriting fact of N -body life held up large-scale
simulation of many-particle systems until the early 1980s, when a number of algorithmic
advances reduced the computational effort to complexities ranging from O(N 3/2) down to
O(N), depending on the context of the problem.

467

In this article we present a tutorial survey of these techniques, which can be broadly
classified into three categories: (i) Ewald summation, (ii) particle-mesh methods, and (iii)
hierarchical or multipole methods. The Ewald method1 is restricted to fully or partially pe-
riodic systems, but has been widely adopted for studies of condensed matter – ionic salts,
molecules in solvent etc. – where it is important to eliminate surface effects which would
arise in a small, isolated system. Particle-mesh codes2, 3 are actually more widespread
outside the MD community, especially in astrophysics, plasma physics and electrical engi-
neering, but form a vital component of the so-called Particle-Mesh-Ewald (PME) method
developed some 10 years ago by Darden4. Multipole methods5, which come in two main
flavours – ‘Fast Multipole Methods’ and ‘Tree-Codes’ respectively – are based on the ob-
servation that distant charges (or masses, in the case of gravity) may be grouped together
and substituted by a single multipole expansion, leading to a substantial saving in the num-
ber of interactions necessary to sum the potential or force.

All of these techniques for accelerating N -body force summation have recently been
subjected to intense re-examination in order to produce codes suitable for parallel computer
architectures. In the final section, some of the important design considerations for N -body
simulation on parallel machines will be discussed, and an attempt is made to compare the
relative performance of the most commonly used methods.

2 Ewald Summation

The technique of Ewald summation is hugely popular in contemporary molecular dynamics
simulation, even though it applies to a special case: namely, periodic systems. By this we
mean that the simulation region or ‘cell’ is effectively replicated in all spatial directions,
so that particles leaving the cell reappear at the opposite boundary. For systems governed
by a short-ranged potential – say Lennard-Jones or hard spheres – it is sufficient to take
just the neighbouring simulation volumes into account, leading to the ‘minimum-image’
configuration shown in Fig. 1. The potential seen by the particle at ri is summed over
all other particles rj , or their periodic images (rj ± n), where n = (ix̂, iŷ, iẑ)L, with
iα = 0,±1,±2...±∞, whichever is closest. More typically, this list is further restricted to
particles lying within a sphere centred on ri

6. For long-range potentials, this arrangement
is inadequate because the contributions from more distant images at 2L, 3L etc., are no
longer negligible. One might argue that these contributions should more-or-less cancel,
which they nearly do, but one has to take care in which order to do the sum: a simple
example serves to illustrate the problem. Consider a system of two oppositely charged ions,
periodically extended to form an infinite one-dimensional line of charges, each separated
by a distance R – Fig. 2. The potential energy of the reference ion with charge −q is:

U = −2q2

(

1

R
− 1

2R
+

1

3R
− 1

4R
...

)

= −2q2

R

(

1 − 1

2
+

1

3
− 1

4
...

)

= −2q2

R
log 2 (3)

The factor 2 log 2 is the Madelung constant, which is of central importance in the theory of
ionic crystals7, 8. The series in (3) is actually conditionally convergent; the result depends

468

Figure 1. Periodic boundary conditions for simulation region (centre, dark-shaded particles at positions �
j),

showing ‘minimum-image’ box for reference ion ⊕ at position �
i containing nearest periodic images (light-

shaded particles at positions �
j ± �).

− + − + − + − + − +

2R

Figure 2. Infinite 1D lattice

on the summation order. To illustrate this, we can choose a different ordering, for example:

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+ ...

= 1 − 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
+ ...

+
1

2
− 1

4
+

1

6
− 1

8
+ ...

=
∑

n

(−1)n−1

n
+

1

2

∑

n

(−1)n−1

n
=

3

2
log 2,

giving us 50% more potential energy than we had before!

469

In three dimensions, determination of the Madelung constant – and hence the lattice
potential energy – is non-trivial because successive terms in the series must be arranged
so that positive and negative contributions nearly cancel. This is exactly the problem we
are faced with when evaluating the potential on our reference ion in Fig. 1, albeit for an
irregular assortment of charges: in what order should we sum over image boxes?

An intuitive and elegant way of doing this is to build up sets of images contained within
successively larger spheres surrounding the simulation region25 – Fig. 3. According to this

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

n=2Ln=Ln=0

Figure 3. Constructing a convergent sum over periodic images. (Adapted from Allen & Tildesley)

scheme, the potential is expressed mathematically as:

Vs(ri) =
∑

n

′
N

∑

j=1

qj

| rij + n | , (4)

where rij = ri − rj and n = (ix̂, iŷ, iẑ)L, with iα = 0,±1,±2... ± ∞ as before. The
prime in the sum over n indicates that the j = i term is omitted for the primary cell
n = 0. Taking the image cells in the order prescribed by Fig. 3 does ensure that the sum
(4) converges to the correct value, but only slowly. Strictly speaking, (4) is a conditionally
convergent series; by contrast, potentials with a radial fall-off steeper than ∼ r−3 are
absolutely convergent9.

2.1 Periodic Lattice Sum

As it stands, the summation over image boxes implied by (4) makes the prospects of speed-
ing up our N -body problem look rather grim: we have turned an O(N 2) problem into one
requiring Nbox × N2 operations! Ewald got around this by recasting the potential as the
sum of two rapidly converging series: one in real space; the other in reciprocal, or k-space:

470

VE(ri) =
∑

n

′
N

∑

j=1

qj
erfc(α | rij + n |)

| rij + n |

+
4π

L3

∑

k 6=0

∑

j

qj exp

(− | k |2
4α2

)

exp {ik · (rj − ri)} −
2α

π1/2
qi (5)

The term α is an arbitrary, but important parameter, which governs the relative convergence
rates of the two main series. The last term is a ‘self-potential’ which cancels an equivalent
contribution in the k-space sum. It is not immediately obvious why the double series (5)
should be equivalent to (4). However, we can begin to make physical sense of it by noting
that

erfc(x) = 1 − 2

π1/2

∫ x

0

e−t2dt.

Thus, what we actually have is an expression of the form:

VE(ri) = Vs(ri) −
∑

n

f(n) +
∑

k

g(k). (6)

In other words, to get (5) from (4), we just use the trick of adding and subtracting an
additional series, summed in real space and k-space respectively. In the Ewald sum, this
new series is in fact the lattice sum for a Gaussian charge distribution

ρ(r) = A exp(−α2r2). (7)

The first two terms in (6) combine to give the rapidly converging real-space sum in (5) –
as illustrated schematically in Fig. 4.

= +

point charges real space k space

Figure 4. Splitting the sum for point charges into two rapidly convergent series for Gaussian-shaped charges.

The choice of kernel for the charge-smearing function is actually not too critical, and
mainly influences the convergence characteristics of the final series. A comparison of
several alternative functions was made some time ago by Heyes10; for tutorial purposes
here, however, we will stick to the simple Gaussian distribution originally used by Ewald
himself:

σ(r) =
α3

π3/2
exp(−α2r2), (8)

471

which is normalised such that
∫ ∞

0

σ(r)dr = 1.

Note that α determines the width and height of the spreading function, and hence the
effective size of the charges.

Let us begin with the real-space sum depicted in Fig. 4. To obtain this, we just subtract
the lattice sum for the smeared-out charges from the original point-charge sum, thus:

Vr(ri) =
∑

n

′
N

∑

j=1

qj

| rij + n |

[

1 −
∫ ∞

0

σ(r − rij)d
3r

]

=
∑

n

′
∑

j

qj

[

1

| rij + n | − 4α3

π1/2 | rij + n |

∫ |rij+n|

0

r2 exp(−α2r2)dr

− 4α3

π1/2

∫ ∞

|rij+n|

r exp(−α2r2)dr

]

The second term in the above expression can be integrated by parts to give an error func-
tion erf(α|rij + n|), plus a term which exactly cancels the third term. Carrying out this
simplification, we finally get:

Vr(ri) =
∑

n

′
N

∑

j=1

qj
erfc(α | rij + n |)

| rij + n | . (9)

The reciprocal-space sum takes a little more work. First, we consider the charge density
of the whole lattice at some arbitrary position r:

ρ(r) =
∑

j

qjδ(r − rj). (10)

Since the lattice is periodic, we can express this equivalently as a Fourier sum:

ρ(r) = L−3
∑

j

∑

k

f(k) exp(−ik · r), (11)

where k = 2π/L(ix̂, iŷ, iẑ); iα = 0, 1, 2, ..etc., and

f(k) =

∫

L3

ρ(r) exp(ik · r)d3r, (12)

where the integration is now restricted to the unit cell volume V = L3. Substituting (10)
into (12) and making use of a standard identity picks out modes corresponding to the point
charges:

f(k) =
∑

j

qj exp(ik · rj) (13)

Turning now to the smeared charge distribution:

ρ′(r) =
∑

j

qjσ(r − rj)

=

∫

V

ρ(r − r′)σ(r′)d3r′, (14)

472

we observe that this is just the convolution of ρ(r) with σ(r), which we know can be
expressed in Fourier space as11:

ρ′(r) =
1

L3

∑

k

′f(k)φ(k, α) exp(−ik · r), (15)

where φ(k, α) is the Fourier transform of the charge-smearing function σ(r), i.e.:

φ(k, α) = exp

(− | k |2
4α2

)

. (16)

We are now equipped to express the potential due to the smeared charges in k-space.
At the reference position ri, this is:

Vk(ri) =

∫ ∞

0

ρ′(ri + r)

r
d3r

=
1

L3

∑

k

′f(k)φ(k, α) exp(−ik · ri)

∫ ∞

0

exp(−ik · r)

r
d3r.

The integral on the right of the above expression is a standard one12, and evaluates to
4π/k2. Combining this with the earlier results (13) and (16) for f(k) and φ(k, α) respec-
tively, we have finally:

Vk(ri) =
4π

L3

∑

k

′
∑

j

qj exp{ik · (rj − ri)}
exp

(

−|k|2

4α2

)

| k |2 . (17)

This potential includes an unphysical ‘self-term’ corresponding to a smeared out charge
centered at ri, which needs to be subtracted off:

Vs(ri) = qi

∫ ∞

0

σ(r)d3r

=
4πqiα

3

π3/2
i

∫ ∞

0

r exp(−α2r2)

=
2α

π1/2
qi. (18)

Adding together our partial results (9), (17) and (18), we recover the Ewald sum quoted
before in Equation 5. The equivalent expression for the force (or more correctly the electric
field) can be found by direct differentiation with respect to the vector between the reference
particle i and particle j:

E(ri) = −∂VE(ri)

∂rij

=
∑

n

′
∑

j

qjrij,n

r3
ij,n

[

erfc(αrij,n) +
2αrij,n√

π
exp(−α2r2

ij,n)

]

+
4π

L3

∑

k6=0

∑

j

qj
k

k2
exp

(−k2

4α2

)

sin (k · rji) . (19)

473

In the above expression, we have used the shorthand notation rij,n ≡ rij + n and
rji ≡ rj − ri. More sophisticated derivations of lattice sums can be found in Leeuw et
al.9, who consider more general systems surrounded by a dielectric medium, by Heyes10,
who considers an arbitrary charge-spreading function, and by Perram et al.13, who derive
expressions for other types of potential (force-laws). A detailed analysis of the cutoff er-
rors incurred by real-space and k-space sums has been made by Kolafa and Perram14; for
the special 2D case by Solvason et al.15.

2.2 Scaling

In replacing (4) by (5) we immediately reap the benefits of rapid convergence. This can be
seen more clearly when we make use of the previous results to compute the total potential
energy of the system, summing over all charges, qi:

ΦT =
1

2

∑

i

qi[Vr(ri) + Vk(ri) − Vs(ri)]

=
1

2

∑

n

′
N

∑

i=1

N
∑

j=1

qiqj
erfc(α | rij + n |)

| rij + n |

2π

L3

∑

k

′
N

∑

i=1

N
∑

j=1

qiqj exp{ik · (rj − ri)}
exp

(

−|k|2

4α2

)

| k |2 − α

π1/2

N
∑

i=1

q2
i . (20)

Simple experimentation with the Ewald sums16 soon reveals a range of parameters in
which one or both of the partial sums can be restricted. The example in Fig. 5, constructed
for 40 randomly distributed positive and negative charges, shows that neither real-space
nor k-space parts can be neglected in the range αL = 1–10, even though large summation
volumes were taken: |n|max = 12, h2 = (kmax/2π)2 = 700, on each side. Although
we will come to the question of optimisation shortly, we can also get an idea of where
to make cutoffs by successively truncating the two sums – Fig. 6. Inspection of these
curves confirms the consensus choice found in the literature of αL ∼ 2–5, which allows
the real-space sum to be restricted to a couple of box lengths (| rj + n |≤ 2L), while
maintaining reasonable accuracy. In fact, for the curve n = 2, h2 = 100, the potential
energy is accurate to better than 10−6 in the range αL = 2 to αL = 9.

The qualitative observations above still do not tell us how the overall computational
effort scales with N , because the cutoff point in both sums may vary. Fixing | rj +n |≤ L
– i.e., adopting the minimum image convention – would of course lead to an O(N 2) scaling
once more. The arbitrariness of the parameter α raises the question of whether one can
choose the cutoffs nmax and kmax in either sum to reduce the overall effort. This seems
a tall order, but just such a recipe was derived by Perram et al.13, who showed that there
does exist an optimal choice of parameters which reduces the scaling to O(N 3/2).

The trick is to weight the summation towards the k-space sum, thereby restricting the
number of particle pairs which have to be considered in real space. Fincham17 gives an
intuitive proof of Perram’s N 3/2 scaling, which we reproduce here. First, we suppose that
both sums are to converge to some small value, depending on the accuracy requirement of
the application. We set this ‘small’ value equal to exp(−p). For the real-space sum (9),

474

10-1
2 5 100

2 5 101
2 5

L

-30

-20

-10

0

k- s

T

r

Figure 5. Convergence of real- (dashed) and k-space (dotted) Ewald potentials for different values of α.

5 100
2 5 101

2

L

-23.0

-22.8

-22.6

-22.4

-22.2

-22.0

n=12 n=2 n=1

h2=100
h2=300

h2=700

Figure 6. Ewald potential energy for different cutoffs in real- and k-space (h2 ≡ (k/2π)2).

this implies that at some cutoff radius R, we may write

erfc(αr)
∣

∣

r=R ∼ exp(−α2R2) = exp(−p) .

From this we immediately obtain a constraint on α, namely:

α = p1/2/R. (21)

Applying the same convergence criterion to the k-space sum, we have for some cutoff

475

wave-vector K:

exp

(

− K2

4α2

)

∼ exp(−p),

or

p =
K2

4α2
.

Thus, making use of our first constraint (21), we obtain

K = 2αp1/2 =
2p

R
. (22)

Once the accuracy (via p) and the cutoff radius R have been chosen, Equations 21 and
22 specify K and α. It remains for us to find a cutoff radius in the real-space sum that
minimises the execution time. To estimate the latter, we assume that all N charges are
distributed uniformly in a cubic box with side L, so that the number density n = N/L3

remains constant as N is varied. The number of ions contained in a cutoff sphere is then:

Nc =
4π

3
R3n.

Hence, the execution time for the real-space sum can be approximated by:

Tr ' 1

2
N

4π

3
R3ntr, (23)

where tr is the time needed to evaluate a single interaction pair. For the k-space sum, we
have a total volume, using (22), of

4π

3
K3 =

4π

3

8p3

R3
,

whereby wave-vectors are chosen according to k = 2π(ix̂, iŷ, iẑ)/L and (ix̂, iŷ, iẑ) is the
usual integer triple. The volume per reciprocal point is just (2π/L)3, so the number of
points in the cutoff sphere is

Nk =
4π

3

(p

π

)3 N

nR3
, (24)

and the overall execution time for the k-space sum is then

Tk =
1

2

4π

3

(p

π

)3 N

nR3
tk. (25)

The total time for the Ewald summation is just the sum of (23) and (25):

Ttot =
1

2

4π

3

[

NnR3tr +
(p

π

)3 N

nR3
tk

]

.

If we fix the accuracy requirement p, the only free parameter remaining is R. The obvious
thing to do is therefore to set dT/dR = 0, whereupon we find:

Ropt =
(p

π

)1/2
(

tk
tr

)1/6
N1/6

n1/3
, (26)

476

and

Topt = 2Tr = 2Tk =
4π

3
N3/2

(p

π

)3/2

(trtk)1/2. (27)

The optimal configuration is thus equally divided (in terms of computation time) between
real- and k-space sums. Assuming tr ∼ tk, and stipulating a fairly conservative accuracy
of exp(−p) ∼ 5 × 10−5, or p = π2, we find from (26)

Ropt ' π
1

2 LN−1/6,

with

αL ' KL

2π
= π

1

2 N1/6.

To illustrate this with a concrete example: for a system of 10000 particles, we would
choose R = 0.38L – less than the minimum-image box length – and αL = 8.2.

For small systems, say N < 104, the conventional Ewald summation technique en-
capsulated by Equation 5 together with the simple optimisation recipe dictated by Equa-
tions 26, 21 and 22 is widely regarded as the standard method for periodic systems. The
reciprocal-space sum itself can be optimised further by exploiting symmetries to reduce
the number of lattice vectors needed16, 18. For larger systems, however, even the reduced
O(N3/2) cost-scaling eventually becomes prohibitive, forcing us to seek faster alterna-
tives. Nevertheless, the direct Ewald method is still an important benchmark for assessing
the performance of other, newer methods, some of which we will describe in the following
sections.

3 Particle-Mesh Techniques

The deployment of a mesh or grid to speed up N -body calculations has long been standard
practice in fields outside the traditional molecular dynamics arena, such as astrophysics
and plasma physics, where the need to follow macroscopic trends over long timescales
usually takes precedence over high accuracy or fine-grained spatial resolution. The term
‘macroscopic’ is loosely applied here to indicated that simulation charges (or masses) may
represent a large number of physical entities. For example, a galaxy containing 1011 stars,
each with mass M equal to one solar mass M�, can be simulated by a system of 104

stars each weighing 107 M�. It turns out that this seemingly crude approximation works
very well as long as one is interested in large-scale, collective effects, such as waves or
instabilities with wavelengths on the same order as the system size itself. For statistical
purposes, however, it is still highly desirable to use as many ‘particles’ as possible, which
leaves one with the same type of computational challenge faced by someone wishing to
follow the dynamics of a protein, say.

Since arbitrarily high accuracy was not (and is still not necessarily) a priority in many
such applications, the O(N) particle-mesh techniques, pioneered by Bunemann19, Daw-
son20, Hockney3 and Birdsall2 in the 1960s, quickly replaced direct summation as the
workhorse computational tool in these fields.

477

3.1 Particle-in-Cell Codes

The subject of grid-based particle methods is too vast to do justice to within the confines
of this review. For one thing, the representation of discrete charges on a grid introduces
artificial structure factors, which in turn give rise to characteristic kinetic behaviour – such
as modifications in the dielectric constant – storing up nasty surprises for the unwary. A
quantitative understanding of such effects affords a certain amount of background theory,
for which we heartily recommend the two definitive texts by Hockney & Eastwood3 and
Birdsall & Langdon2. Nonetheless, it will prove instructive to review the basic concepts
of the particle-mesh (PM) method. In doing so, we hope to clarify some of the ambiguous
terminology which has crept into the MD literature on this subject.

Formally, the PM method can be derived by rigorous application of kinetic theory,
simplifying the N -body problem with 6N degrees of freedom via the introduction of a
smooth distribution function f(r, v, t), obeying the kinetic Vlasov-Boltzmann equation21:

∂f

∂t
+ v·

∂f

∂x
+ qE·

∂f

∂v
=

∂f

∂t

∣

∣

∣

∣

c

. (28)

The term on the RHS is a collision term, describing the transfer of momentum between
particles due to close encounters. Herein lies an important difference between PM and
MD: in MD, collisions are treated automatically as part of the computation, whereas in
a PM code, some approximate collision model must be introduced. Construction of a
physically sensible and computationally stable model is fiendishly difficult, and luckily
need not concern us here: for the time-being we will assume that our particle system is
purely collisionless, and set ∂f/∂t|c = 0.

The distribution function f(r, v) is 6-dimensional, so the general solution of (28) is
still intractable for most practical purposes. Even for problems reducible to a 1D geom-
etry, one typically still needs to retain 2 or 3 velocity components in order to incorporate
the appropriate electron motion and its coupling to Maxwell’s equations, which effectively
results in a 3- or 4-dimensional ‘Vlasov’-code. In the particle-mesh technique, the distri-
bution function is represented instead by a large number of discrete ‘macro-particles’, each
carrying a fixed charge qi and mass mi – Fig. 7, usually chosen so that the charge-to-mass
ratio corresponds to a physical counterpart, for example e/me. This ensures that the par-
ticle trajectories in the simulation match those which would be followed by real electrons
and ions.

x

v
f(x,v)

x

v

q(x ,v)i i

Figure 7. Correspondence between Vlasov and particle-in-cell representation of phase-space.

478

The particles are moved individually in Lagrangian fashion according to the equation
of motion:

d

dt
(vi) =

qi

mi
E i = 1, ..., N (29)

The density source needed to compute the electric field is obtained by mapping the
local particle positions onto a grid via a weighting function W :

ρ(r) =
∑

j

qjW (rj − r), j = 1, ..., Ncell (30)

where W (r� − r) is a function describing the effective shape of the particles. Often it is
sufficient to use a linear weighting for W – originally dubbed the ‘Cloud-in-Cell’ scheme
by its inventors Birdsall & Fuss22 – although other more accurate methods are also possible.
Once ρ(r) is defined at the grid points, we can proceed to solve Poisson’s equation to obtain
the new electric field. This is then interpolated back to the particle positions so that we can
go back to the particle push step (29) and complete the cycle – Fig. 8.

jρ

E j

iE

iir , v

2. Maxwell equations

1. Particles −> Grid4. Push particles

3. Grid −> Particles

Figure 8. Schematic illustration of the particle-in-cell algorithm.

Because of its simplicity and ease of implementation, the PIC-scheme sketched above
is currently one of the most widely used plasma simulation methods. It is particularly
suitable for the study of kinetic or non-Maxwellian effects. The simplest variation of this
technique is a ‘1D1V’-configuration: 1 space coordinate plus 1 velocity, the numerical
behaviour of which was first examined by Dawson some forty years ago23.

The heart of the code is based on the following difference equations:

Particle pusher: v
n+ 1

2

i = v
n− 1

2

i +
qi

mi
En

i ∆t,

xn+1
i = xn

i + v
n+ 1

2

i ∆t, (31)

Density gather: ρn+1
j =

∑

i

qiW (xi − xj),

S = 1 − | xi − xj |
∆x

, (32)

Field integration: En+1

j+ 1

2

= En+1

j− 1

2

+ ρn+1
j ∆x. (33)

479

Notice that this scheme uses one of the simplest weighting schemes, namely linear inter-
polation, with the effect that the particles have an effective size of 2∆x. Other weighting
schemes are listed below in Fig. 9. The choice of scheme is, not surprisingly, a choice
between speed and accuracy – see Hockney & Eastwood, Chapter 5 for a comprehensive
discussion3. We will return to this issue when we discuss the Particle-Mesh-Ewald method
in Section 3.3. The subscript on W refers to the number of grid points along each axis

j−1 j j+1x

j−1 j j+1x

j−1 j j+1x

NGP

CIC

TSC

W1(x) = 1, | x |< 1

W2(x) = 1 − |x|, | x |< 1

W3(x) =

3

4
− x2, |x| < 1

2

1

2
(
3

2
− |x|)2, 1

2
< |x| < 3

2

Figure 9. Charge assignment schemes: a) Nearest-grid-point, b) Cloud-in-cell and c) Triangular-shaped-cloud.

contributing to the charge-spreading. In all cases, x ≡ (xi − xj)/∆x and W (x) = 0
outside the ranges indicated. The weighting function is extended into 2 and 3 dimensions
by forming the product along each direction. For example, the popular CIC scheme in 3D
takes the form of an 8-point weighting function:

W2(r) = (1 − |x|)(1 − |y|)(1 − |z|), |x|, |y|, |z| < 1.

The difference scheme for the Poisson equation is also readily generalised to 3 dimensions:

6φj,k,l−(φj+1,k,l+φj−1,k,l+φj,k+1,l+φj,k−1,l+φj,k,l+1+φj,k,l−1) = 4π∆2ρj,k,l, (34)

where the grid spacing is now assumed to be the same in all directions: ∆x = ∆y = ∆z =
∆. Given that we can solve (34), the electric field is then obtained from:

Ej,k,l = −φj+1,k,l − φj−1,k,l

2∆
− φj,k+1,l − φj,k−1,l

2∆
− φj,k,l+1 − φj,k,l−1

2∆
(35)

480

For periodic systems, Equation 34 can be solved using fast Fourier transforms (FFTs), by
first computing ρ̃(k) and then applying the inverse transform to φ̃(k) = ρ̃(k)/k2 to recover
φ(r) in real space. This procedure results in Ng log Ng operations, where Ng is the total
number of grid points.

Having obtained new field values on the mesh, these are then interpolated back to the
particles using the same weighting scheme as for the charge assignment:

Ei =
∑

jkl

Ej,k,lW (ri − rj,k,l).

For example, in the CIC scheme in Fig. 9, a particle will receive field contributions from
its nearest 8 grid points, weighted according to the volume-overlap between the mesh cell
and a cube of side ∆/2 centered on the particle.

Particle-mesh or particle-in-cell simulation typically uses many particles per cell,
N � Ng, to keep field quantities as smooth as possible. The main computational cost
is therefore not in the field solver, but in the integrator (or ‘particle pusher’, as it is com-
monly known), which is just O(N). In electrodynamics, the pusher can be much more
complicated than the simple linear acceleration implied by (31), often containing magnetic
fields and relativistic factors. The drawback of mesh methods is that the spatial resolution
is limited to distances r ≥ ∆, no matter how densely-packed the particles are, since these
have an effective size ∼ ∆. In some sense, the particle-mesh technique is the ideal algo-
rithm for long-range forces, because short-range interactions are automatically excluded!
Of course this is not particularly helpful in the context of molecular dynamics, which is
based on the ability to follow individual particle trajectories – including short-range en-
counters – explicitly and accurately.

3.2 P3M: Particle-Particle, Particle-Mesh

Ideally, one would like to have the best of both worlds offered by pure MD and PM respec-
tively: high resolution of individual encounters, combined with a rapid mesh-based eval-
uation of long-range forces. This is precisely the philosophy behind the particle-particle,
particle-mesh (P3M) method developed primarily by Eastwood in the 1970s24. The inter-
particle force is initially split into two contributions:

F ij = F PP
ij + F PM

ij , (36)

where the PP part is finite only over a few interparticle spacings, up to some cutoff radius
rc; the PM part is assumed to be temporally and spatially smooth enough to be computed
on a mesh – Fig. 10.

The question which immediately arises is: how do we implement this splitting in prac-
tice? Clearly, the short-range (PP) sphere should be as small as possible to minimise the
number of direct PP interactions. If it is too small, however, spatial resolution will be lost
which cannot be compensated for by the PM calculation. This is because PM-codes filter
out all modes with |k| ≥ π/∆, where ∆ is the mesh size.

The second issue concerns the matching of the force and potential contributions across
the artificial boundary created by the cutoff sphere. We have already seen that the intro-
duction of a grid causes the particles to acquire a finite form factor which depends on the
details of the charge assignment scheme. We can illustrate how force splitting works by

481

Rc

a

i

Figure 10. Force calculation using the P 3M splitting scheme.

taking the simplest of the schemes in Fig. 9, NGP, and working out its associated interpar-
ticle force. In three dimensions, the NGP scheme is equivalent to replacing point charges
by spheres of radius a/2, with a uniform density given by:

ρ(r) =

6q

πa3
, r < a/2

0, r ≥ a/2

(37)

Elementary electrostatics shows that the force between two such spheres along the axis
joining their centres is given by:

Fsphere(r) =

q2

a2

(

8r

a
− 9r2

a2
+

2r4

a4

)

, r < a

q2

r2
, r ≥ a

(38)

The natural force-splitting choice in this case is to take the short-range cutoff Rc = a, and
to set the PP force inside this sphere equal to the difference between the Coulomb force
and this effective force contribution arising from the mesh points:

F PP (r) =

{

Fc(r) − Fsphere(r), r < a

0, r ≥ a

This modified force-law is illustrated in Fig. 11. Note that we are not changing the
physics here: the ultimate goal is still to match the exact Coulomb law for all r; that is,
when short- and long-range components are added together. Of course, we could guarantee

482

0.0 0.5 1.0 1.5 2.0
Distance r/a

0

1

2

3

4

5

Fo
rc

e
la

w
F(

r)
/q

2 PP
PM
Coulomb

Figure 11. P 3M force-laws for short-range (PP, dotted line) and long-range (PM, dashed line) contributions.

this by summing over the particles:

F PM
i =

N
∑

j=1

Fsphere(ri − rj),

but then we would be back to square one, saddled with an O(N 2) force-summation! The
challenge is to arrange the fast, but approximate, particle-mesh calculation in such a way
as to minimize the difference between the forces evaluated on the mesh and the ‘exact’
reference force given by (38).

Fortunately the particle-mesh algorithm outlined earlier (31)–(33) gives us plenty of
leeway to achieve this goal. All four of the intermediate steps necessary to compute the
‘mesh’ forces – charge assignment, potential solver, differencing, and back-interpolation
to the particles – present an opportunity to improve the matching of F PM

i to the reference
force. The details of this minimisation process are quite complex however, and the reader
is referred to Hockney & Eastwood3, Chapter 8. In the public version of their P 3M code24,
charge assignment is performed using the TSC function, rather than NGP, which is found to
give better overall performance. Once the PM parameters have been fixed, the calculation
proceeds as in conventional MD: linked neighbour-lists are used to narrow down the search
effort in the short-range calculation25, 6, and the velocities and positions are updated using
a standard integrator.

The P3M algorithm in its original form as advocated by Hockney & Eastwood has
not been widely adopted for production MD simulation, despite its promising scaling
characteristics for large particle number. This is perhaps due to the uncertainty created
by the admittedly complicated force-splitting procedure, leaving the user with less than
100% confidence in its accuracy. Recent comparisons of P3M with other techniques26 has

483

demonstrated that these doubts are largely unfounded, however, so we can perhaps expect
a rejuvenation of this method in other fields too.

A more transparent version of P3M has been implemented for ‘dense plasma’ (neutral
electron-ion) systems by Nishihara et al.27. In their scheme, the short- and long-range
contributions are organised by the mesh itself – Fig.12. In this example, the Coulomb
forces on particle i are summed 1 over the other particles within its own cell plus those
(e.g.: j1) in the neighbouring 26 cells (hatched region). The forces from particles outside
(j2) are computed from the mesh (shaded region), but excluding the charges inside the
hatched region. The splitting is thus even more artificial than before, but actually easier to
implement.

ii j1j1

j2j2 j3j3

Figure 12. P 3M scheme using grid-based force-splitting.

3.3 Particle-Mesh-Ewald

By now the reader will probably have noticed the striking similarity between the clas-
sical Ewald method – summarised by Eq. 6 – and the force- or potential-splitting prin-
ciple behind P3M. This correspondence is perhaps surprising because in a sense, the
two methods approach the N -body problem from different philosophical viewpoints: the
Ewald method seeks to perform an exact, periodic lattice-sum by deliberately introducing
a charge-spreading function to speed up convergence; P3M is a means of rapidly evaluat-
ing the long-range force contribution through the use of a grid, due to which the charges
automatically acquire a finite size.

In Section 2.2 we saw that the optimal configuration for the Ewald sum is achieved
when the computational effort is equally shared between the real- and reciprocal-space

484

sums. In P3M, the bias is shifted even further towards the particle-mesh calculation (which
is also usually performed in reciprocal space) to guarantee something like an O(N) scaling.
In 1993, Darden, York and Pedersen4 realised that the Ewald sum could be recast in the
P3M form by using a large value for the convergence parameter α. This accelerates the
convergence of the real-space sum, which can then be restricted to a smaller cutoff radius
Rc, and ensures that the main contribution is computed in k-space. According to Eq. 24,
this means summing over a large number of k-vectors, Nk ∼ N/nR3

c for each particle.
At this point, Darden et al. took the analogy with P3M a step further, arguing that

Gaussian-shaped charges could be equally well mapped onto a regular grid and the result-
ing potential computed by a FFT. Assuming the charges can be adequately represented on
a m×m×m mesh with a fixed number of particles per cell, i.e.: m3 ∝ N , then the scheme
will scale as N log N , the time it takes to perform the Fourier transform. Thus, instead of
evaluating (17), we first compute the FFT of the gridded density, which by inspection of
(15) is given by:

ρ̃jkl(k) =
1

L3
exp

(

− k2

4α2

)

∑

i

qi exp(ik · ri) (39)

The potential in k-space is then just the density multiplied by an ‘influence’ function G̃(k):

φ̃jkl(k) = G̃(k)ρ̃(k), (40)

where

G̃(k, α) =
exp(−k2/4α2)

k2
, (41)

and the fields are given simply by:

Ẽjkl(k) = −ikφ̃jkl(k)

= −ikG̃(k, α)ρ̃(k). (42)

The inverse FFT then yields the potential and fields at the grid points, which can then be
interpolated back to the particle positions28.

In its original form, the particle-mesh-Ewald (PME) algorithm of Darden et al. stuck
with Gaussian charge shapes for consistency with the real-space part of the Ewald sum
(which is evaluated conventionally according to Eq. 9). Unfortunately, this has the draw-
back that a large number of points – typically 83 ∼ 100 – are needed to map the charges
onto the grid, creating a new numerical bottleneck. The advantage of the P3M scheme is
that it restricts the charge distribution to 8 (CIC) or 27 (TSC) grid points respectively. A
number of works have since appeared29, 26 which fully adopt the P3M concept of a narrow,
finite assignment function. Just as in P3M, the errors incurred by this procedure can be
compensated by modifying the influence function G̃(k) – (41) – to include the discrete-
ness effects of the grid30. For consistency, the same charge shape should be used for the
real-space sum, which, as shown by Heyes10, will still guarantee rapid convergence. PME
can thus be formally regarded as a special case of P3M, though we have deliberately treated
the methods separately here because of their independent historical development.

Many implementations and applications of the PME method have already appeared31,
including a sophisticated variation based on B-spline interpolation32, assessments of its
performance relative to crude cutoff methods33 as well as multipole methods28.

485

4 Multipole Methods

So far in this review, we have dealt exclusively with periodic systems, which can be neatly
handled by some form of Ewald summation. As we have seen in the previous two sections,
there are essentially two choices in this case: the direct, optimised scheme of Perram et
al.13, or a grid-based P3M/PME scheme4, 29. There is, of course, a large number of N -
body problems for which periodic boundaries are completely inappropriate, for example:
galaxy dynamics, electron-beam transport, large proteins31, and any number of problems
with complex geometries. So how does one get round the N 2-bottleneck if there is no
symmetry to exploit?

Two new approaches to this problem were put forward in the mid-1980s, the first from
Appel34 and Barnes & Hut35, who proposed O(N log N)-schemes based on hierarchical
grouping of distant particles; the second from Greengard & Rohklin36, who went one bet-
ter, devising an O(N) solution with rounding-error accuracy. These two methods – known
today as the ‘hierarchical tree algorithm’ and the ‘fast multipole method’ respectively –
have revolutionised N -body simulation in a much broader sense than the specialised peri-
odic methods discussed earlier. They offer a generic means of accelerating the computation
of many-particle systems governed by central, long-range potentials.

Although the FMM is currently more widespread in molecular dynamics than the
Barnes-Hut (BH) tree algorithm, we nevertheless give both methods an equal airing here.
For one thing, the methods are conceptually very similar (and are therefore related); sec-
ondly, both FMM and BH are still evolving, and it is likely that some hybrid, adaptive
scheme may eventually prevail as a competitive alternative to, say, PME even for periodic
simulations with moderate numbers of particles.

4.1 The Barnes-Hut Tree Algorithm

An inherent inefficiency in direct force-summation is that one does not distinguish near-
neighbours from more distant particles; each pair evaluation requires the same computa-
tional effort, even though the individual contributions of distant particles may be negli-
gibly small. Introduction of an artificial cutoff radius can separate out the important and
less important partners, but this procedure only works well for short-range potentials; for
Coulomb potentials, errors will accumulate as a result of abrupt truncation.

In 1986, Barnes and Hut35 introduced a scheme in which the physical space is sys-
tematically divided up so as to establish and maintain a relationship between each particle
and its neighbours. The resulting ‘tree’ structure can then be used to group distant clusters
of particles into a single charge or mass, thereby reducing the number of interactions in
the force/potential calculation. These codes are sometimes described as oct-tree codes to
distinguish them from so-called binary tree codes37, 38, based on nearest neighbour pairs.
Although binary trees might reflect the structure of the system more closely, the Barnes
and Hut method is by far the most commonly used method due to its conceptual simplicity
and easy, low-overhead tree construction.

There is no single correct way to go about the tree-building process, but one method
which produces an identical structure to the original BH scheme is as follows39. First, a
root cell is created containing all simulation particles – Fig.13a) This cell is then divided
into eight equally sized subcells – Fig.13b). For each subcell, one asks whether it contains
none, one, or more than one particle.

486

a)

c)

b)

d)

Figure 13. Step-by-step division of space for a simple 2-D particle distribution.

1 2 3

4 5

1

2 3 4 5

6 7 8 9

root

Figure 14. Tree data structure corresponding to Fig. 13d)

If the cell is empty, this cell is ignored; if there is one particle in the cell, this is stored
as a ‘leaf’ node in the tree structure; if there are more particles in a cell, this cell is stored
as a ‘twig’ node and subdivided further. The subdivision process continues until there are
no cells with more than one particle left, which ultimately leads to Fig.13d). The division
of space just described is not used as a grid in the particle-mesh sense, but rather as a
bookkeeping structure. At each division step, the tree data structure is augmented with the
twig-nodes belonging to next level down in the hierarchy – Fig. 14. Each node in the tree
is associated with a cubic volume of space containing a given number of particles; empty
cells are not stored. Pointers to the parents of each leaf and twig node are also kept in the
tree structure.

487

O

rs1

ri

Ro

R1

rs2

rs3

daughter 1 daughter 2

daughter 3

Figure 15. Origin shift for the multipole calculation: the circles symbolize the pseudoparticles (twig-nodes); ri

is a vector from a constituent particle to the centre of charge of the daughter node and rs1, rs2, etc. are the
shifting vectors to the new origin O′ (�), which is the centre of charge of the parent node.

Once the tree is in place, the twig nodes (represented by the 5 ellipses in Fig. 14) can
be ‘loaded’ with information about their physical contents, like their centres of charge,

rcoc =

∑

i | qi | ri
∑

i | qi |
(43)

and their multipole moments:

M =
∑

i

qi

Dα =
∑

i

qiriα (44)

Qαβ =
∑

i

qi(3riαriβ − r2
i δαβ) (45)

This information will be needed later for the force calculation when the twigs are treated
as pseudoparticles. This loading of twig-nodes, can be performed very rapidly by prop-
agating information up the tree level-by-level, from individual particles (leaves), through
the intermediate twigs until the root is reached.

To do this, we make use of the already-computed multipole moments of the daughter
cell to calculate the moments of the parent cell. Each individual ri in the sum of a daughter
moment is shifted by the same vector rsd. For example,

∑

i qixi → ∑

i qixi − xsd

∑

i qi

∑

i qix
2
i →

∑

i qix
2
i − 2xsd

∑

i qixi + x2
sd

∑

i qi

488

∑

i qixiyi → ∑

i qixiyi − xsd

∑

i qiyi − ysd

∑

i qixi + xsdysd

∑

i qi

and so forth. These results are used later to calculate the contribution of selected twig-
nodes to the total force or potential.

Obviously, the tree-building process incurs a certain overhead in an N -body code, so
it is natural to ask how much. A rough estimate of how many divisions are needed to
reach a typical cell, starting from the root, can be obtained from the average size of a cell
containing one or more particles. The average volume of such a cell is the volume of the
root cell V divided by the number of simulation particles N . Moreover, the average length
of a cell is a power of V 1/3/2. Therefore,

(

1

N

)1/3

=

(

1

2

)x

,

which means that the height x of the tree is of the order

log2 N1/3 =
1

3 log 2
log N ' log N. (47)

Starting from the root, an average of log N divisions are necessary to reach a given leaf.
The tree contains N leaves, therefore the time required to construct the tree is O(N log N).
In practice, tree-building actually comprises only 3–5% of the total force calculation, so it
can be performed every timestep.

The tree structure provides the means to distinguish between close particles and dis-
tant particles without actually calculating the distance between every particle. The force
between near-neighbours is calculated directly, whereas more distant particles are grouped
together to pseudoparticles. An interaction list is thus built for each particle by traversing
the tree from node-to-node and deciding whether to accept the node as-is, or subdivide
further. There are actually a number of so-called ‘multipole acceptance criteria’ (MACs)
of varying complexity40, the simplest of which is the original ‘s/d’ criterion introduced by
Barnes and Hut35. Beginning at the root of the tree, the ‘size’ of the current node (or twig),
s, is compared with its distance from the particle, d. If the ratio s/d is smaller than some
preset value, θ, then the internal structure of the pseudoparticle is ignored and it is added
to the interaction list for that particle. Otherwise, this node is resolved into its daughter
nodes, each of which is recursively examined according to s/d and, if necessary, subdi-
vided. Fig. 16 illustrates this comparison at two different stages of the tree-walk. This
continues until all nodes have been examined, i.e.: when we have returned to the root.

The result of this procedure is an interaction list, the length of which depends both on
N and θ, the multipole acceptance parameter – Fig. 17. The case θ = 0 is equivalent to
computing all particle–particle interactions; which is exact but rather pointless, because
the operation count is again O(N 2). This is in fact slower than direct PP because of the
tree-building and traversal overheads. A practical choice using this MAC proves to be in
the range θ = 0.3–1.0, depending on the application.

The asymptotic scaling of this algorithm can be estimated by considering the average
number of interactions nint in a spherical, homogeneous distribution surrounding a test
particle. For nonzero θ, it can be shown that39:

nint ∼ log N/θ2, (48)

489

d

s/d = 0.94

s

d

s/d = 0.48

s

d

s/d = 0.23

s

Figure 16. The relation s/d for different levels of the tree.

Figure 17. Interaction list generated for particle marked ⊗, using multipole acceptance parameter θ = 1.0. The
black circles are single charges; the shaded circles multipole expansions.

so the time required to calculate the force on a given particle is O(log N), which means
the number of operations to compute the force on all N bodies will scale as O(N log N).

Having determined the interaction lists for each particle, all that remains is to compute
the potentials and forces. However, we have already anticipated making use of multi-
pole expansions to take account of the charge distribution inside the pseudoparticle terms.
Referring to Fig. 18, the potential at particle P due to the pseudoparticle is the sum of the
potentials Φi due to the particles contained in the cell,

Φ(R) =
∑

i

Φi(R − ri),

where ri is the vector from the particle to the centre of mass and the origin is, for simplicity,
the individual particle on which the force of the pseudoparticle is calculated. Here we

490

r

R

ri

P

Figure 18. Geometry of multipole expansion.

consider a 1/r-potential, therefore

Φi(R − ri) =
qi

|R− ri|
=

qixi
√

(x − xi)2 + (y − yi)2 + (z − zi)2
.

Expanding this potential about R up to quadrupole order, gives:

Φ(R) =
∑

i

qi

[

1 − ri
∂

∂r
+

1

2
r r

∂

∂r

∂

∂r
+ ...

]

1

R

=
∑

i

qi

[

1 − xi
∂

∂x
− yi

∂

∂y
− zi

∂

∂z

+
1

2
x2

i

∂

∂x

∂

∂x
+

1

2
y2

i

∂

∂y

∂

∂y
+

1

2
z2

i

∂

∂z

∂

∂z

+
1

2
xiyi

(

∂

∂x

∂

∂y
+

∂

∂y

∂

∂x

)

+
1

2
yizi

(

∂

∂y

∂

∂z
+

∂

∂z

∂

∂y

)

+
1

2
xizi

(

∂

∂x

∂

∂z
+

∂

∂z

∂

∂x

)]

1

R

=
∑

i

qi

[

1

R
+ xi

x

R3
+ yi

y

R3
+ zi

z

R3

+
1

2
x2

i

(

− 1

R3
+

3x2

R5

)

+
1

2
y2

i

(

− 1

R3
+

3y2

R5

)

+
1

2
z2

i

(

− 1

R3
+

3z2

R5

)

+xiyi

(

3xy

R5

)

+ yizi

(

3yz

R5

)

+ xizi

(

3xz

R5

)]

491

This can be rearranged to give:

Φ(R) =
M

R
+

∑

α

rαDα

R3
+

∑

αβ

1

2
Qαβ

rαrβ

R5
, (50)

where M, Dα and Qαβ are the monopole, dipole and quadrupole moments of the pseu-
doparticles, defined previously in (44). The indices α and β refer to the 1 components
x, y, z, so that riα = (xi, yi, zi) etc.

The corresponding electric field can be obtained directly from (50) by differentiating
with respect to R:

E(R) = − ∂

∂R
Φ(R), (51)

which gives for the each component γ:

Eγ =
rγ

R3
M +

∑

α

(

3rαrγ

R5
− rαδαγ

R3

)

Dα +
∑

αβ

5rαrβrγ

R7
· 1

2
Qαβ −

∑

α

rα

R5
Qαγ .

Expanding the multipole moments and the summations, we arrive at a somewhat more
convenient form for implementing in a code5:

Ex =
x

R3

∑

i

qi.

−
(

1

R3
− 3x2

R5

)

·
∑

i

qixi +
3xy

R5
·
∑

i

qiyi +
3xz

R5
·
∑

i

qizi.

+

(

15x3

R7
− 9x

R5

)

· 1

2

∑

i

qix
2
i +

(

15xy2

R7
− 3x

R5

)

· 1

2

∑

i

qiy
2
i

+

(

15xz2

R7
− 3x

R5

)

· 1

2

∑

i

qiz
2
i +

(

15x2y

R7
− 3y

R5

)

·
∑

i

qixiyi

+

(

15x2z

R7
− 3z

R5

)

·
∑

i

qixizi +

(

15xyz

R7

)

·
∑

i

qiyizi. (53)

The y- and z-components can be found by cyclic rotation. Compared with the direct force
calculation, Equation 53 above contains 8 additional multipole terms which must be evalu-
ated for each twig-node in the interaction list. Clearly, this necessitates a certain overhead
for the BH tree algorithm, so that it will only be more efficient above a certain particle
number. Where this breakeven point is exactly, depends mainly on the accuracy desired,
i.e. on the choice of θ. We defer comparison of multipole schemes until later (Fig.24),
but for the moment, we note that the standard tree code relies very much on a trade-off
between speed and accuracy – Fig. 19.

4.2 The Fast-Multipole Method (FMM)

The Fast-Multipole Method was developed by Greengard & Rohklin, shortly after the
Barnes–Hut algorithm appeared36, 41, 42. In some sense, therefore, the FMM can be thought

492

0.0 0.3 0.6 0.9 1.2 1.5
0
1
2
3
4
5
6
7
8

C
P

U
tim

e
(s

)

-6
-5
-4
-3
-2
-1
0
1

lo
g

|
|

time

error

Figure 19. Trade-off between CPU time per integration step and average force error as a function of multipole
acceptance parameter using monopole terms only (dashed lines) and quadrupole terms (solid lines).

of as an elegant refinement of the BH tree-code, but in fact it was developed indepen-
dently. The FMM makes rigorous use of the fact that a multipole expansion to infinite
order contains the total information of a particle distribution. As in the BH algorithm, the
interaction between near-neighbours is calculated by direct particle–particle force summa-
tion, and more distant particles are treated separately. However, the distinction between
these two contributions is obtained in a different way. In FMM the distant region is treated
as a single ‘far-field’ contribution, which is calculated by a high-order multipole expansion.

By forming high-order multipole moments at the lowest level of the tree and carefully
combining and shifting these centres up and down the tree, Greengard and Rokhlin showed
that the N -body problem can in principle be reduced to an order O(N) algorithm36. Ar-
bitrary accuracy (e.g., within numerical rounding error) can be assured a priori by taking
sufficient terms in the expansion. Because of this, it is essential to find a concise mathe-
matical representation of the multipoles and their shifting theorems. The first FMM codes
were two dimensional36, 43 and exploited a convenient complex variable notation to rep-
resent the potentials and fields. The 3D formulation uses spherical harmonics instead and
was also derived by Greengard41, and later implemented by Schmidt and Lee44 for periodic
systems.

Like the tree algorithm, FMM starts with a box big enough to contain all the simulation
particles, and this box is subsequently subdivided into boxes of length d/2r (r = 0, 1, 2, ...)
equivalent to 8r equal sized subvolumes (4r in two dimensions). In contrast to the tree
method, however, this is done for every box up to a given maximum refinement level R,
regardless of the number of particles it contains – Fig. 20. This maximum refinement
level R is chosen so that the number of boxes is approximately equal to the number of
the simulated particles N . This means that assuming the N particles are more or less
homogeneously distributed, the maximum refinement level (in 3D) must be chosen as

R = log8 N.

493

r = 3

r = 2

r = 1

r = 0

Figure 20. Division of the simulation box in a fast multipole code.

The FMM tree structure is used to build ‘near-neighbour’ lists of boxes at each refine-
ment level r. Near-neighbours are defined as the box itself and any box at the same level
with which it shares a boundary point. By contrast, a box on the same level which is not in
a near-neighbour list is well separated: A local multipole expansion made about the centre
of this box will then automatically be valid. Using the usual conventions45 for spherical
harmonics and units, the generalized version of (50) is:

Φ(r) = 4π
∑

l,m

MlmYlm(θ, φ)

(2l + 1)rl+1
(54)

in spherical coordinates (r, θ, φ) relative to an origin O, with multipole moments given by:

Mlm =
∑

i

qir
l
iY

∗
lm(θi, φi), (55)

where the charges now have the coordinates (ri, θi, φi). As in the Barnes-Hut algorithm,
multipole moments are first computed for each box at the highest refinement level R, but
this time relative to the centre of the box rather than the centre of charge of the particles.
The maximum number of terms L in the multipole expansion is chosen such that36, 43:

(
∑

i

| qi |)2−L ≤ ε, (56)

where ε is the desired precision.
Next, the multipole moments on the next coarsest refinement level r = R − 1 are

calculated, and just as for the tree method, the shifted multipole moments of the daughter
cells can be used to obtain the moments of the parent cell. Shifting the origin O to O′ by

494

a translation vector rt, a transformation of the multipole moments is needed to obtain the
expansion in terms of the new vector r

′ = r − rt relative to O′. This transformation is
given by:

M ′
l′m′ =

∑

l,m

T MM
l′m′,lmMlm, (57)

with the transformation matrix

T MM
l′m′,lm = 4π

(−rt)
l′−1Y ∗

l′−l,m′−m(θt, φt)a
′
l′−l,m′−malm(2l′ + 1)

2(l + 1)[2(l′ − l) + 1]al′m′

,

and alm is defined as

alm = (−1)l+m 2(l + 1)1/2

[4n(l + m)!(l − m)!]1/2
.

This is just a generalization of the 1 shifting relations used for the (quadrupole order) tree

B

Figure 21. Shifting of the multipole expansion from the daughters on level r = 3 to the parents up r = 2 during
the upward pass.

code, with the main difference that the moments are calculated relative to the centre of the
cell (see Fig. 21). In this fashion, the moment expansions are carried up to to root level
r = 0, which ultimately contains an L-term multipole expansion of the whole system.

So far, apart some hair-raising mathematics, there is little to choose between a standard
tree code and the FMM. At this point, we could just use our L-term multipole expansions
for the ‘box-to-particle’ strategy of the tree algorithm. In the FMM, however, we include
the extra step of evaluating ‘box-box’ interactions. To do this, we perform a downward
pass (from r = 0 to r = R), in which a careful distinction is made in the interaction lists
for the boxes. There are actually three regions: the near field, the interactive field and
the far field. The near field consists of the neighbouring cells; the far field is the entire
simulation box excluding the cell in question and its neighbours. The interactive field is
the part of the far field that is contained in the near field of this cell’s parents – Fig. 22.

495

b)a)

Figure 22. a) List of well-separated boxes (interactive field) which contribute to local expansion of the hatched
box in b) at level r = 2.

In this downward pass, each multipole expansion is converted into a local expansion
(i.e., a Taylor expansion about the centre of all well-separated boxes at each level). Using
the notation above, this can be expressed thus:

Ψ(r) = 4π
∑

l,m

LlmrlYlm(θ, φ), (60)

where Llm are referred to as the local moments of the Taylor series expansion, obtained
from the original multipole moments by the transformation:

Ll′m′ =
∑

l,m

T LM
l′m′,lmMlm, (61)

where the transformation matrix T LM
l′m′,lm is now

T LM
l′m′,lm = 4π

(−1)l+mY ∗
l′+l,m′−m(θt, φt)al,mal′m′

rl′+l+1
t (2l + 1)(2l′ + l)al′+l,m′−m

. (62)

The region of validity of the multipole expansions that contribute to the local expansion
consists of all boxes at the same level which are not near neighbours. At levels r = 0 and
r = 1, there are no boxes which fulfill this requirement, so we just set

Ψ0 = Ψ1 = 0

From r = 2 to r = R the following operations can now be performed: For each box on
level r, the local expansion of the parent box is shifted to the centre of each of its daughters
as in Fig. 22b). In other words,

L′
l′m′ =

∑

l,m

T LL
l′m′,lmLlm,

496

with

T LL
l′m′,lm = 4π

rl−l′

t Yl′−l,m′−m(θt, φt)al′m′al−l′,m−m′

(2l′ + 1)[2(l − l′) + 1]alm
.

In this local expansion of the daughter cell there are now boxes missing. These are the
boxes that do not touch the current daughter cell, but do not contribute to the local expan-
sion of the parent cell either – in other words, the boxes of the interactive field – Fig. 23a).
Their contribution has to be added to the local expansion of the daughter cell. The result
is the local expansion due to all particles in all boxes at the same level which are not near
neighbours. However, the ultimate aim is to evaluate the potential or force not on the box,
but rather on the particles inside the box. Therefore, once the highest refinement level is
reached, the local expansions at the individual particle locations are evaluated.

Finally, the remaining interactions with the particles in neighbouring boxes and the box
itself are added by direct summation of the particle–particle interactions – Fig. 23b).

b)a)

Figure 23. a) List of well-separated boxes (interactive field – grey) which contribute to the local expansion of the
hatched box at level r = 3. b) Near-neighbour boxes (hatched region) for the direct particle–particle sum at the
finest level (in this case R = 3)

Some recent improvements to these formulations – in which the central multipole trans-
formations are optimised – have been proposed by Petersen et al.46 and White and Head-
Gordon47. A new implementation for high-precision quantum chemistry applications has
been reported by Dachsel48 at this Winter School.

At first sight it seems that FMM codes with a computation time proportional to N must
be superior to tree codes – which scale as N log N – and particle–particle codes – which
scale either as N2 or N3/2 depending on the boundary conditions. However, FMM codes
have a large overhead due to the multipole and Taylor expansions, so one has to ask instead:
at what point is it appropriate to use an FMM code instead of a PP or tree code? This is
not a simple question to answer, because the computation time depends not only on the
number of particles N , but also on how accurately the calculation should be performed.

497

For the tree code, accuracy is determined by the tolerance parameter θ, for the FMM
code the number of multipole terms L and the refinement level R have the same function.
Schmidt and Lee44 showed that the overall polynomial dependence of the computation on
N , L, and R is given by

P = aBL2 + bNL2 + cBL4 + dB

[

g1 + g2

(

N

B

)

+ g3

(

N

B

)2
]

, (65)

where a, b, c, g1, g2, and g3 are machine-dependent parameters and B is the number of
boxes (8R) on the highest refinement level. Interestingly, Eq. 65 shows that it is crucial
that ratio N/B is kept small, because only then is the N 2 dependence actually removed,
leaving a dominant O(N) scaling. In practice, this means increasing the number of levels
as N is increased, typically leading to a ratchet-like timing curve.

One of the assumptions of the FMM is that the distribution of the particles is more or
less homogeneous. Nonuniform particle distributions would either require a high refine-
ment level or a large number of terms in the multipole expansion, both resulting in higher
overheads. Therefore, the original form of the fast multipole method is not very suitable
for nonuniform distributions, or for dynamical systems which may develop large density
contrasts over the course of time. To cope with this, adaptive fast multipole codes49–51 have
been developed, which are basically hybrids between the BH and FM algorithms.

5 Performance and Parallelism

Comparison of N -body algorithms is a dangerous business because unless one is com-
pletely impartial, there is a tendency to neglect one’s least favourite scheme. A classic ex-
ample is the direct N -particle summation, which can be performed in a time N(N − 1)/2
by exploiting the ‘action-reaction’ symmetry of the Coulomb force-law. Overlooking this
fact immediately makes the naive PP scheme a factor of 2 slower than it needs to be.
Less trivial optimisations are also often neglected in the Ewald method for periodic sys-
tems, leading to wildly differing conclusions for the ‘crossover’ points at which alternative
schemes – PME, FMM etc. – are faster.

5.1 Open Systems

Because periodicity necessitates additional complexity and overheads which differ for the
Ewald and multipole schemes, we first consider the simpler case of open boundaries, where
the system is surrounded by an infinite vacuum with no external forces present. Here we
will compare the pure PP algorithm against the Barnes-Hut35 tree algorithm (BH) and
the standard Greengard FMM36. To make the comparison meaningful we perform tests
for fixed accuracy, defined by the relative RMS particle-particle force error, estimated as
follows:

εα =

{

∑Ntest

i=1
(fa

αi − fr
αi)

2

∑Ntest

i=1
(fr

αi)
2

}
1

2

,

where fa
αi and fr

αi are the components of the forces on particle i, evaluated using the
approximate and direct (reference) methods respectively. For homogeneous, symmetric

498

density distributions, we can average over the three force components:

εf =
1

3

∑

α

εα.

Note that this is a stronger measure than, say the relative error in potential energy

εpot =

∣

∣

∣

∣

Φa − Φr

Φr

∣

∣

∣

∣

,

where individual errors can sometimes cancel each other. Generally, error estimates based
on εf are larger than those found with εpot, and represent a more reliable and stringent
measure for dynamical applications52, 53.

Benchmarks for these three algorithms performed on a SunBlade Sparc machine are
shown in Fig. 24. The initial distribution used was a neutral, homogeneous sphere of ran-
domly placed positive and negative charges. With the BH algorithm, setting the multipole
acceptance parameter θ to 0.2 and 0.5 resulted in average force errors of 0.1% and 1%
respectively, almost independent of N – see Fig. 19. To achieve equivalent precision with
the FMM is not just a matter of choosing the appropriate number of multipoles, because
the refinement level needs to be adjusted too as N is increased. Esselink53 investigated
this effect in some detail, and we quote adjusted timings from his FMM code for 7- and
4-term expansions. The above curves reveal two noticeable features. First, the Barnes-Hut

5 103
2 5 104

2 5 105
2 5 106

N

10-2

10-1

100

101

102

103

104

C
P

U
tim

e
(s

)

. O(N) reference
PP
FMM L = 10 (10-4)
FMM L = 7 (10-3)
FMM L = 4 (10-2)
BH = 0.2 (10-3)
BH = 0.5 (=10-2)

Figure 24. Comparison of computation time as a function of the number of simulation particles N between
particle–particle, hierarchical tree, and the fast multipole code for a 3-dimensional open system. The FMM
timings are taken (and adjusted) from Esselink (1995)

algorithm is clearly hard to beat for ‘low-precision’ applications (where a force error of 1%

499

can be tolerated), displaying a breakeven point over PP of around 5000 for the BH code
compared to about 10000 for FMM. If high precision is needed however (for, say Monte-
Carlo configurational computations), then FMM comes into its own for particle numbers
in excess of 105.

5.2 Periodic Systems

As we hinted at before, timing comparisons for the classic, periodic lattice of charges with
which we began this article have proved to be the most controversial in the past, with
claimed breakeven points ranging from 300 to 105! These discrepancies can usually be
traced to differing levels of optimisation for both Ewald and FMM algorithms. Rather than
attempt to implement a ‘perfect’ Ewald sum ourselves, we take timings from Esselink’s
paper53, which describes several optimisations in some detail. The FMM timings, on the
other hand, we draw from Schmidt & Lee’s paper44, where they also describe and imple-
ment a fully periodic version. The overhead caused by periodic boundaries is actually just
a few percent if one uses the multipole expansion for the whole system for the periodic
images. Figure 25 shows a comparison of the computation time required by the Ewald
method, tree code, and fast multipole codes for a 3-dimensional, fully periodic system of
charges. Extrapolating the FMM curves for these error levels (around 10−4 and 10−3 for
the upper and lower curve respectively), one can estimate the breakeven point somewhere
between 5×104 and 105 - a little higher than for open systems. This value seems to be
consistent with a more rigorous comparison by Solvason et al. for 2D periodic systems15.

The other two curves shown are taken from a periodic tree code (Barnes-Hut-Ewald –
BHE), developed by Pfalzner & Gibbon54 for plasma physics applications. These appear
to be comparable with timings reported for PME/P3M codes30, 28, 26, though the tree code
is perhaps less accurate in the form used. Another interesting periodic BH derivation has
been presented by Duan & Krasny55, who also deduce a breakeven point of about 104

particles.

5.3 Parallelisation Strategies

The widespread availability of parallel supercomputers has made N -body calculation very
attractive as a simulation tool, even bringing direct O(N 2) force summation into the realms
of feasibility for a restricted set of problems56. The direct N2 algorithm contains a natural
parallelism, requiring a simple sharing of particles between the processors. Communica-
tion overheads can be minimised by passing partial results between processors in a ring
(systolic loop), as described elsewhere in these proceedings6.

The methods described in this review are all designed to yield a better algorithmic
scaling than the brute force option, i.e. a speed-up relative to direct summation regardless
of machine architecture. Having established a breakeven point for a given accuracy, it is
important to know whether this will still hold on a massively parallel computer. In practice,
we find that N -body algorithms have widely differing efficiencies when implemented in
parallel, so we now briefly outline the main parallelisation strategies used to date.

The conventional Ewald method which we started with in Section 2 is quite easy to
implement in parallel. Even with a modest number of processors, there is an immediate

500

5 103
2 5 104

2 5 105
2 5 106

N

10-1

100

101

102

103

104
C

P
U

tim
e

(s
)

Ewald
FMM L = 8, R = 3
FMM L = 16, R = 3
BHE = 0.75
BHE = 0.5

Figure 25. Comparison of computation time as a function of the number of simulation particles N between
particle–particle, hierarchical tree (BHE), and the fast multipole code for a neutral system of charges with periodic
boundary conditions. The FMM timings are derived from Schmidt and Lee (1991).

opportunity for task sharing provided by the splitting of the sum into real- and reciprocal-
space, which yields two more-or-less equally time-consuming contributions. The real-
space part can be split further according to the standard PP recipe; the k-space sum can
be reformulated as a particle sum multiplied by structure factors which can be computed
independently on each processor57.

Unfortunately, parallelism is not so clear-cut for the PME or P3M methods: if anything
it becomes less efficient, because the Ewald sum gets heavily and deliberately biased to-
wards the now gridded Fourier component. On a scalar machine, the latter can be rapidly
evaluated by FFTs, leading to the desired O(N log N)-scaling. However, the binary, recur-
sive nature of the FFT is not well suited to distributed-memory parallelism, and ultimately
results in poor scalability58. An alternative P3M scheme with very promising scaling char-
acteristics has recently been suggested by Beckers et al. , in which the FFT is abandoned in
favour of an iterative Poisson solver59. Parallel implementation of this scheme involves a
standard spatial decomposition commonly found in fluid dynamics applications, in which
a ‘halo’ of ghost cells a few grid points wide is placed around each processor domain. The
halos act as communication buffers for grid information held by neighbouring processors
needed for the local integration of Poisson’s equation.

Multipole-based N -body methods require somewhat more effort to implement on par-
allel architectures, but have nonetheless attracted considerable attention because of the po-
tentially rewarding prospect of Giga-particle simulation which modern Teraflop machines
would offer. A parallel version of the original, non-adaptive 2D FMM was proposed by
Greengard himself as early as 199060. This scheme, based on task-sharing in each of the
separate near- and far-field stages of the FMM, works well on shared memory machines,

501

but less efficiently on distributed memory systems. Nonetheless, these ideas inspired the
first parallel FMM for MD simulation of macromolecules, developed and demonstrated by
the Duke University group in the early 1990s50, 61.

Of all the algorithms described here, the Barnes-Hut tree code probably presents the
biggest challenge for parallel implementation. At first sight, the hierarchical data struc-
ture would seem to rule out parallelism altogether, but it was soon realised that both tree
construction and interaction lists could be at least vectorised on a level-by-level basis62–64,
leaving a straightforward N × Nlist force summation to contend with. However, all this
only works with shared memory. On distributed memory machines, the tree structure ei-
ther has to be global to all processors – a very expensive and wasteful option – or some-
how divided up equally among them. The problem is that the access to the whole tree is
in principle needed to build an interaction list. Searching for nonlocal nodes on remote
processors using the pointer addressing schemes typical of scalar tree codes would entail a
huge communication overhead. This problem was recognised by Salmon and Warren65, 66,
who practically reinvented the BH algorithm by scrapping pointers in favour of a set of
unique binary keys to represent particle and node coordinates. Domain decomposition is
reduced to cutting a list of keys sorted into an appropriate order. The main drawback of
this scheme is that memory locations are accessed by mapping the large number of possi-
ble keys onto a hash table; a process that risks ‘collisions’ – two or more keys yielding the
same address. Various ways have been proposed to minimise this effect, including sorting
addresses according to access frequency, and distributing ‘work’ rather than tree-nodes to
remote processors67.

The trend in machine architecture is towards ever larger processor arrays – currently
approaching the 10000 mark68, which puts a premium on algorithm efficiency. Even a 1%
inefficiency due to a non-parallel component or communication overhead can lead to severe
performance deterioration for 1000 processors or more6. Which of the above algorithms is
best suited to large-scale computations on large machines is really an open question. The
mesh- and multipole-based methods may have a mathematically superior scaling, but are
harder to implement efficiently in parallel, and will thus continue to present a challenge as
computers increase in size.

6 Summary

In this article we have attempted to provide a guide to the alternative methods available for
accelerating the force or potential calculation for long-range N -body problems. Although
it is impossible to give any strict recommendations, we can draw up some general rules-of-
thumb as to which scheme to choose. For the special but important case of periodic sys-
tems, some form of P3M is widely acknowledged as being faster than the classical Ewald
sum for reasonable accuracy (10−4 relative force error, say) – in the range N = 104–
105. Thereafter, it may be worth investing in FMM, particularly if very high precision is
desired for one-shot configurational calculations, for example. The lesser known Barnes-
Hut-Ewald schemes may also be competitive with either of these methods for all N , though
this remains to be demonstrated conclusively. For open systems, multipole methods are the
only alternative, and have become routine in astrophysical and plasma physics applications.
For static, high-precision problems where N > 105, FMM is again hard to beat. On the
other hand, dynamical applications (MD) call for force-accuracy comparable with the in-

502

tegration scheme (typically 0.1–1%), which favours the much simpler BH algorithm. This
segregation of requirements does not rule out future hybrid, adaptive multipole schemes
suitable for implementing on massively parallel architectures.

Acknowledgments

One of us (PG) acknowledges discussions on the intricacies of optimised FMM with H.
Dachsel.

References

1. P. P. Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale, Ann.
Phys. 64, 253 (1921).

2. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation,
(McGraw-Hill, New York, 1985).

3. R. L. Hockney and J. W. Eastwood, Computer Simulation Using Particles, (McGraw-
Hill, New York, 1981).

4. T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: an N.log(N) method for
Ewald sums in large systems, J. Chem. Phys. 98, 10089–10092 (1993).

5. S. Pfalzner and P. Gibbon, Many Body Tree Methods in Physics, (Cambridge Univer-
sity Press, New York, 1996).

6. G. Sutmann, “Classical molecular dynamics”, in Quantum Simulations of Complex
Many-Body Systems: From Theory to Applications, J. Grotendorst, Ed. (NIC, Jülich,
2002).

7. E. Madelung, Das elektrische Feld in Systemen von regelmässig angeordneten Punkt-
Ladungen, Phys. Z. 19, 524–532 (1918).

8. C. Kittel, Introduction to Solid State Physics, (Wiley & Sons, New York, 5th edition,
1976).

9. S. W. De Leeuw, J. W. Perram, and E. R. Smith, Simulation of electrostatic systems
in periodic boundary conditions. I. Lattice sums and dielectric constants, Proc. Roy.
Soc. Lon. 373, 27–56 (1980).

10. D. M. Heyes, Electrostatic potentials and fields in infinite point charge lattices, J.
Chem. Phys. 74, 1924–1929 (1981).

11. M. L. Boas, Mathematical Methods in the Physical Sciences, (Wiley & Sons, New
York, 1st edition 1966).

12. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics
vol. 1, (Addison-Wesley, Reading, Mass.,1963).

13. J. W. Perram, H. G. Petersen, and S. W. D. Leeuw, An algorithm for the simulation
of condensed matter which grows as the N 3/2 power of the number of particles, Mol.
Phys. 65, 875–893 (1988).

14. J. Kolafa and J. W. Perram, Cutoff errors in the Ewald summation formulae for point
charge systems, Mol. Sim. 9, 351–368 (1992).

15. D. Solvason, J. Kolafa, H. G. Petersen, and J. W. Perram, A rigorous comparison of
the Ewald method and the fast multipole method in two dimensions, Comp. Phys.
Commun. 87, 307–318 (1995).

503

16. M. J. Sangster and M. Dixon, Interionic potentials in alkali halides and their use in
simulations of the molten salts, Adv. in Phys. 25, 247–342 (1976).

17. D. Fincham, Optimisation of the Ewald sum for large systems, Mol. Sim. 13, 1–9
(1994).

18. G. Rajagopal and R. J. Needs, An optimized Ewald method for long-ranged potentials,
J. Comp. Phys. 115, 399–405 (1994).

19. O. Bunemann, Dissipation of currents in ionized media, Phys. Rev. 115, 503–517
(1959).

20. J. M. Dawson, Particle simulation of plasmas, Rev. Mod. Phys. 55, 403–447 (1983).
21. R. Dendy, Ed., Plasma Physics: An Introductory Course, (Cambridge University

Press, Cambridge, 1993).
22. C. K. Birdsall and D. Fuss, Clouds-in-clouds, clouds-in-cells physics for many-body

plasma simulation, J. Comp. Phys. 3, 494–511 (1969).
23. J. M. Dawson, One-dimensional plasma model, Phys. Fluids 5, 445–459 (1962).
24. J. Eastwood, R. W. Hockney, and D. N. Lawrence, P3M3DP: The three-dimensional

periodic particle-particle / particle-mesh program, Comp. Phys. Commun. 19, 215–
261 (1980).

25. M. P. Allen and D. J. Tildesley, Computer simulations of liquids, (Oxford University
Press, Oxford 1987).

26. E. L. Pollock and J. Glosli, Comments on P3M, FMM, and the Ewald method for large
periodic Coulombic systems, Comp. Phys. Commun. 95, 93–110 (1996).

27. H. Furukawa and K. Nishihara, Reduction in bremsstrahlung emission from host,
dense binary-ionic-mixture plasmas, Phys. Rev. A 42, 3532–3543 (1990).

28. H. G. Petersen, Accuracy and efficiency of the particle mesh Ewald method, J. Chem.
Phys. 103, 3668–3679 (1995).

29. B. A. Luty, I. G. Tironi, and W. F. van Gunsteren, Lattice-sum methods for calculating
electrostatic interactions in molecular simulations, J. Chem. Phys. 103, 3014–3021
(1995).

30. B. A. Luty, M. E. Davis, I. G. Tironi, and W. F. van Gunsteren, A comparison of
Particle-Particle Particle-Mesh and Ewald methods for calculating electrostatic in-
teractions in periodic molecular systems, Mol. Sim. 14, 11–20 (1994).

31. T. Schlick, R. D. Skeel, A. T. Brunger, L. V. Kale, J. A. Board Jr., J. Hermans, and
K. Schulten, Algorithmic challenges in computational molecular biophysics, J. Comp.
Phys. 151, 9–48 (1999).

32. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen, A
smooth particle mesh Ewald method, J. Chem. Phys. 103, 8577–8593 (1995).

33. D. M. York, T. A. Darden, and L. G. Pedersen, The effect of long-range electrostatic
interactions in simulations of macromolecular crystals: a comparison of the Ewald
and truncated list methods, J. Chem. Phys. 99(10), 8345–8348 (1993).

34. A. Appel, An efficient program for many-body simulation, SIAM J. Sci. Statist. Com-
put. 6, 85 (1985).

35. J. Barnes and P. Hut, A hierarchical O(N log N) force-calculation algorithm, Nature
324, 446–449 (1986).

36. L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comp.
Phys. 73, 325–348 (1987).

37. W. H. Press, ”, in The use of supercomputers in stellar dynamics, P. Hut and S. L. W.

504

McMillan, Eds. (Springer, New York 1986), p. 184.
38. W. Benz, Applications of smooth particle hydrodynamics (SPH) to astrophysical

problems, Comp. Phys. Commun. 48, 97–105 (1988).
39. L. Hernquist, Hierarchical N-body methods, Comp. Phys. Commun. 48, 107–115

(1988).
40. J. K. Salmon and M. S. Warren, Skeletons from the treecode closet, J. Comp. Phys.

111, 136–155 (1994).
41. L. Greengard, The rapid evaluation of potential fields in particle systems, MIT Press

Cambridge, Mass. (1988).
42. L. Greengard, The numerical solution of the N-body problem, Computers in Physics

pp. 142–152 Mar./Apr. (1990).
43. J. Ambrosiano, L. Greengard, and V. Rokhlin, The fast multipole method for gridless

particle simulation, Comp. Phys. Commun. 48, 117–125 (1988).
44. K. E. Schmidt and M. A. Lee, Implementing the fast multipole method in three dimen-

sions, J. Stat. Phys. 63, 1223–1235 (1991).
45. J. D. Jackson, Classical Electrodynamics, (Wiley, New York, 2nd edition, 1975).
46. H. G. Peterson, D. Soelvason, J. W. Perram, and E. R. Smith, The very fast multipole

method, J. Chem. Phys. 101, 8870–8876 (1994).
47. C. A. White and M. Head-Gordon, Derivation and efficient implementation of the fast

multipole method, J. Chem. Phys. 101, 6593–6605 (1994).
48. H. Dachsel, private communication. See also Poster by same author at the NIC Winter

School (2002).
49. J. Carrier, L. Greengard, and V. Rokhlin, A fast adaptive multipole algorithm for

particle simulations, SIAM J. Sci. Stat. Comput. 9, 669–686 (1988).
50. J. A. Board Jr., J. W. Causey, J. F. Leathrum Jr., A. Windemuth, and K. Schulten, Ac-

celerated molecular dynamics simulation with the parallel fast multipole algorithm,
Chem. Phys. Lett. 198, 89–94 (1992).

51. H. Cheng, L. Greengard, and V. Rohklin, A fast adaptive multipole algorithm in three
dimensions, J. Comp. Phys. 155, 468–498 (1999).

52. L. Hernquist, Performance characteristics of tree codes, Astrophys. J. Supp. 64,
715–734 (1987).

53. K. Esselink, A comparison of algorithms for long-range interactions, Comp. Phys.
Commun. 87, 375–395 (1995).

54. S. Pfalzner and P. Gibbon, A hierarchical tree code for dense plasma simulation,
Comp. Phys. Commun. 79, 24–38 (1994).

55. Z.-H. Duan and R. Krasny, An Ewald summation based multipole method, J. Chem.
Phys. 113, 3492–3495 (2000).

56. R. Spurzem, Direct N-body simulations, J. Comp. Appl. Math. 109, 407–432 (1999).
57. R. K. Kalia, S. de Leeuw, A. Nakano and P. Vashishta, Molecular dynamics simu-

lations of Coulombic systems on ditributed-memory MIMD machines, Comp. Phys.
Commun. 74, 316–326 (1993).

58. A. Gupta and V. Kumar, The scalability of FFT on parallel computers, IEEE Trans.
Parallel Dist. Systems 4, 922–932 (1993).

59. J. V. L. Beckers, C. P. Lowe, and S. W. de Leeuw, An iterative PPPM method for
simulating Coulombic systems on distributed memory parallel computers, Mol. Sim.
20, 369–383 (1998).

505

60. L. Greengard and W. D. Groop, A parallel version of the fast multipole method, Com-
put. Math. Applic. 20, 63–71 (1990).

61. “Distributed parallel multipole tree algorithm”, Duke University Technical Report
(2000), http://www.ee.duke.edu/research/SciComp/Docs/

62. J. E. Barnes, A modified tree code: don’t laugh; it runs, J. Comp. Phys. 87, 161–170
(1990).

63. J. Makino, Vectorization of a treecode, J. Comp. Phys. 87, 148–160 (1990).
64. L. Hernquist, Vectorization of tree traversals, J. Comp. Phys. 87, 137–147 (1990).
65. M. S. Warren and J. K. Salmon, “A parallel hashed oct-tree n-body algorithm”, in

Supercomputing ’93 Los Alamitos (1993) IEEE Comp. Soc. pp. 12–21.
66. M. S. Warren and J. K. Salmon, A portable parallel particle program, Comp. Phys.

Commun. 87(266–290) (1995).
67. A. Grama, V. Kumar, and A. Sameh, Scalable parallel formulations of the Barnes-Hut

method for N -body simulations, Parallel Comp. 24, 797–822 (1998).
68. Top 500 computer sites, http://www.top500.org/

506

