
EMPIRICAL MANY-BODY POTENTIAL 
ENERGY FUNCTIONS USED IN COMPUTER 

SIMULATIONS OF CONDENSED MATTER 
PROPERTIES 

Sakir ERKOC 

Department qf Physics, Middle East Technical University, 06531 Ankara, Turkey 

ELSJZVIER 

AMSTERDAM ~ LAUSANNE - NEW YORK - OXFORD - SHANNON - TOKYO 



PHYSICS REPORTS 

Physics Reports 278 (1997) 79-105 

Empirical many-body potential energy functions used 
in computer simulations of condensed matter properties 

Sakir Erkog 
Department of Physics, Middle East Technical University, 06531 Ankara, Turkey 

Received June 1996; editor: S.D. Peyerimhoff 

Contents 

1. Introduction 81 2.2. Group-II EMBPEFs 88 
2. Empirical many-body potential energy 2.3. Group-III EMBPEFs 96 

functions 83 Appendix A 103 
2.1. Group-I EMBPEFs 83 References 104 

Abstract 

Empirical many-body potential energy functions (EMBPEFs) are extensively used in atomistic computer simulations, 
especially in molecular dynamics and Monte-Carlo methods. There are several EMBPEFs used in the literature for different 
purposes, some of these functions are suitable for bulk and surface properties, and some of them are suitable for cluster 
properties. In this article the EMBPEFs used in the computer simulation applications for condensed matter properties will 

be reviewed. 
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1. Introduction 

Many physical properties of matter, in various phases such as solid, liquid and gas, may exper- 
imentally be observed and/or determined. It is also possible to theoretically calculate and predict 
many physical properties of matter again in various phases. Without any doubt calculations done 
by considering first-principles quantum mechanical methods give accurate results. However, because 
they require a large computational effort to accurately solve the Schrodinger equation, these methods 
are currently limited to studies of static properties for systems involving only a few tens of atoms. 
On the other hand, although they generally lack the accuracy of the former methods, empirical inter- 
atomic potentials can handle much larger systems and can be used to study static as well as dynamic 
properties of such systems [l]. 

In many areas today, computer simulations are becoming an integral part of many investigative 
procedures and provide help in understanding various problems at atomistic levels. This informa- 
tion has been used successfully in the interpretation of many experimental results. Many of these 
simulation techniques, which are called atomistic level simulations, are based on empirical model 
potentials describing interactions among the atoms in the system. 

Atomistic simulation has proved to be a valuable tool for the investigation and understanding of 
microscopic processes in condensed matter. There are several methods available, molecular dynamics, 
Monte-Carlo, energy and/or force minimization and lattice dynamics, but they all depend on a 
knowledge of the interatomic potential. The advantage of computer simulation is that one knows 
exactly what one is measuring and the disadvantage is that the results one obtains are only as good 
as the potential that one obtains from them [2]. 

The concept of model potentials, generally speaking, is based on the Born-Oppenheimer approx- 
imation. If it is assumed that in the absence of external forces the total energy of a system of N 
interacting particles may be expressed as 

EN = 4, + $2 + 43 + . . . + +n + . . , (1) 

where &, represents the sum of n-body interaction energies. On the other hand, the total energy of 
a system of N non-interacting particles may be expressed as 

E(, = 4,. (2) 

The difference between these two total energies (E N - EL) gives the total interaction energy of a 
system of N interacting particles as a function of their positions: 

@ = E.v - E,; = 42 + C#Q + . . + 4,1 + . . , (3) 

@ = @(rj,rz,...,rjv>, (4) 

42 = C K(r,,ri), (5) 
J-3 

43= C U3(r,,rj,rk), (6) 
!</<k 

db= C un(r,,rj,...,rn), 
;</<.--<,I 

(7) 

where Uz, U3, and U, represent two-, three-, and n-body interactions, respectively. 
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The quantity @ is measurable, which describes the total configuration energy (or potential energy) 
of the system. In this so-called many-body expansion of @, it is usually believed that the series 
has a quick convergence and, therefore, the higher moments may be neglected [3]. Otherwise, this 
equation cannot be employed for systems containing more than only a few atoms. In practice, it 
is difficult to handle the n-body expansion in the calculations, on one hand, and it is not easy to 
define multi-body atomic interactions, on the other hand. For this reason the many-body expansion is 
usually truncated after the three-body term. The contribution of the truncated terms may be included 
by inserting various parameters (linear and/or non-linear parameters) to the remaining terms. 

In the earlier calculations, in general, the higher terms including even the three-body part were 
omitted, and the total potential energy @ was approximated only by the sum of two-body interac- 
tions. This approach, which may be regarded as a first-order approximation, not only simplified the 
statistical mechanical formalisms used in calculating various thermodynamical properties, but, more 
importantly, it enabled many earlier researchers to run simulation calculations with relatively smaller 
and less powerful computers. In most of the simulation calculations which are carried out consider- 
ing this first-order approximation, Lennard-Jones-type functions were employed to mimic two-body 
interactions. Despite the fact that those so-called Lennard-Jones systems may only represent rare 
gases where the role of many-body forces is minimal [4], they provided a very useful understanding 
about many properties and processes in a systematic way that could not be acquired easily by other 
means. 

Studies in the last decade, however, have indicated that, particularly in the case of systems contain- 
ing atoms other than those with closed-shell structures, this first-order approximation is inappropriate 
and produces results inconsistent with many experiments due to neglect of many-body interactions 
[5]. In the last decade in the simulation studies, therefore, in addition to two-body interactions, 
three-body interactions also are being considered in the calculation of potential energies. 

It has been well recognized that the importance of three-body interactions increases with increasing 
covalent character of the bonding among atoms in the system [6]. While for rare gases the three-body 
part is negligibly small, for metals and in particular for semiconductors their contribution turns out 
to be extremely significant. 

In addition to providing improved interpretability, interatomic potentials provide computational 
speed essential for computer simulations of complex materials-science problems. Some such prob- 
lems, including the direct simulation of fully three-dimentional fracture dynamics, cannot at present 
be treated reliably even with pair potentials. However, many important problems are simple enough 
to be treated with interatomic potentials, but too complex to be treated directly with fully quantum 
mechanical methods [7]. The range of problems treatable by fully quantum mechanical methods will 
certainly continue to grow with expanding computing capabilities, but in the foreseeable future most 
materials-science problems will require the use of interatomic potentials or schemes of comparable 
simplicity. 

In this study, we compiled the empirical many-body potential energy functions (EMBPEFs) avail- 
able in the literature, containing both two- and three-body atomic interactions. 

There are around 35 such functions in the literature: different functions proposed for different 
systems and applied for different properties of the systems. These properties usually include bulk, 
surface and cluster properties of condensed matter. 

This review will describe the explicit forms of the EMBPEFs, their parametrization schemes, their 
applications, and the parameter set of most of them. 
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There are a few review articles about the EMBPEFs in the literature, but they focused on certain 
materials and they did not consider all the EMBPEFs available in the literature [ 1,6, 891. 

The purpose of this review is to put all the EMBPEFs together and open a wide range of views 
to the interested researchers. 

2. Empirical many-body potential energy functions 

The EMBPEFs compiled in this work will be grouped and ordered with respect to the mathemat- 
ical similarity of the functions. Therefore, a chronological order may not take place. Actually, the 
EMBPEFs may be classified into two main groups, the first group of functions containing two- and 
three-body interactions together as a functional form, and the second group of functions containing 
two- and three-body interactions separately. Therefore, we call the first group of functions as two- 
and three-body functionals, which we may represent by the notation Qir = c&: 

There are nine PEFs compiled in this group. On the other hand, we call the second group of functions 
as two- and three-body functions, which we may represent by the notation @iI = & + &: 

@I[ Zi @ = $2 + 43 = C Uij + C Wi,f,. 
i<i r<j<k 

There are 18 PEFs compiled in this group. There are some functions other than these main groups, 
such that some of these functions include multi-body interactions, namely four-body interactions. In 
addition to this type of functions a few of them contain pair interactions only, but they intrinsically 
contain many-body effects. We may classify all these functions as the third group of functions, which 
we may represent by the notation @ii,: 

@ii, - @ = (h? or If, = 4, + qL + q& or @ = q52 + & + $4. (10) 

There are 11 PEFs compiled in this group. 
Therefore, we will present in this article 38 EMBPEFs in three groups: Group-I functions (@,), 

Group-II functions (@ii), and Group-III functions (@ii,). In the following pages we call the PEFs by 
the name of the authors. 

2.1. Group-I EMBPEFs (@I) 

2.1.1. Termfpotential (I) a 
This PEF was developed for covalent systems [lo]. 

B,i = Beep+’ h , z,, = zj [ $-$I” X [c + eCd ‘Oh “IA] -’ , w(r) = .f,(r)C”“‘, 
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fc(r) = :‘- $ sin [irc(r - R)/D] , 

r<R-D, 

6, 

R-D<r<R+D, 
r>R+D. 

The PEF was parameterized for Si which describes bonding and geometry for several structures, 
including surface and defect properties. The parameters were determined by using the cohesive 
energy, lattice constant, bulk modulus, the pair energy of S&. The parameters of the PEF for Si: 

A = 2280eV, B0 = 171 eV, 1, = 2&, AZ = 1.465A-‘, b = 1.324, c = 6.5, d = 6.02, n = 4, 
R=3.0& D=O.2A. 

This PEF does not satisfy the crystal stability of diamond-Si; it gives the BCC structure as most 
stable. 

2.1.2. Dodson potential q 
This PEF is the modified form of the Tersoff potential (I) [ 1 I]. 

@ = & = C Uijik, UljZk = Jj(Ac-2’.‘ff - Bije-iLrl/), 
i<j;k 

z” Jb B, = Bee- ‘1 , hk ’ 
Zij = C - 

[ 1 k#i,j fij 

e42(r,, --rt!? ) x 

[ 

c + e -d cm H,,i 
-1 

1 . 
fij is defined as in Tersoff potential (I). This form of the PEF satisfies the crystal stability of 
diamond-$ in addition to other properties of diamond-Si predicted by Tersoff potential (I). This 
PEF can be used for global structural calculations for Si. The parameters of the PEF for Si: A = 

1614.6eV, B0 = 155.08eV, 11, = 2.7793A-‘, A2 = 1.3969A-‘, b = 3.4785, c = 0.8543, d = 3.9588, 
v = 0.6207. 

2.1.3. TersofSpotential (II) q 
This PEF was developed for covalent systems (silicon, carbon) [12]. 

@ = +2,3 = c Uij;k, &j;k = fc(rij) [fR(rij) + bijfA(rij)] > 
i<j;k 

fR(r) = Ae-“I’, fA(r) = -Be- jQr, b, = (1 + 8”tfi)-“2”, 

rij = kgi fc(rik)Y(oi,k) exP [$(rij - rik)3], g(e) = 1 + $ - 

c2 

1. d*+(h-cos8)2’ 

fC(r) is defined as in Tersoff potential (1). The PEF satisfies crystal stability and phonon dispersion 
curve. It was used for the calculation of point defect energies, surface properties, elastic properties, 
and liquid properties of Si. The PEF was also parameterized for carbon. It describes the structural 
properties of carbon, including elastic properties, phonons, poly types, and defects. The potential 
was applied to study amorphous carbon. Parameters of the PEF for Si and C are in Table 1. 

2.1.4. Brenner potential (I) q 
This PEF was developed for carbon [ 131. 

@ = 42,3 = c Uij;k, &j;k = fc(rlj) [&(rij) + bijh(rij)] > 
i<j;k 
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Parameter Si (set 1) Si (set 2) C 

3264.1 1830.8 1393.6 
95.373 471.18 346.74 

3.2394 2.4799 3.4879 

1.3258 I .7322 2.2119 

1.3258 1.7322 0.0 
0.33675 1.0999 x 10-h 1.5724 x lo-’ 

22.956 0.78734 0.7275 I 
0.0 -0.59826 PO.57058 
4.8381 1.0039 x lo8 3.8049 x lo4 
2.0417 16.218 4.3484 

3.0 2.85 1.95 

0.2 0.15 0.15 

b&j) = & exp [-PmCrij - rc)], V,(rij) = s exp [-~$$i(Tfj - r,)], 

Zjj = C fc(rik)g(8ijk)emcr”-r”‘, 

C2 
bi, = (1 + Zij)pn, 

k#i,/ d* + (h + cos O)* . 

J(T) is defined as in Tersoff potential (I). The PEF was used in the calculation of various properties 
of diamond and graphite. It was also applied to small carbon clusters. The parameters of the PEF for 

C (carbon): D, = 6.325 eV, r, = 1.28 A, p = 1.5 A-‘, S = 1.29, n = 0.8047, (x = 0.01 13, (’ = 19.0, 

d = 2.5, h = 1.0, m = 2.25 A-‘, R = 2.1 A, D = 0.2k 

2.1.5. Brenner potential (II) q 
This PEF was developed for hydrocarbons [ 141. 

Q, = 42.3 = c U,,;k, uij;k = vR(ri, ) - Bij &.(r,) 

k(rij) = .,6,(rij)cs.DT 1) exp [-Pij&(rij - UC)], 

I/ 

.f;,(r) = 

i 

1;1 + cos(rc(r - r~“)/(?-~2’ - rL”)>], 

Y < ri”, 

i, 

f-L” < r < i-:2), 

y > ri*), 

B;j = &(BjJ + Bji) + Fj(N,(+),NJ+‘,N~“‘), B, = [l + G, + H,i(N~“‘,Jv’~c’)]-‘) , 

Gil = C fik(r;k)Gi(0ijk) exp [aijk[(r;j - re) - (rik - rc)]], 
kji.; 
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MH’ = c _Lj(rij>, Ap = c fii(Yjj), jq) = #H’ + jp, I 

j(=hydrogen) j(=carbon) 

N, = l + C J;k(-%k) + C fjfCxjf 1, 
k#i,J f#i,j 

F(X,k) = 

Xik <2, 

1 + cos(~(xik - 2)]}, 2 < xik3, 

xik 33, 

Xik = NY - frk(f”ik), 1 + $ - d2 + (1 f cos e)2 . 

0 0 1 
The parameters of the PEF were determined by fitting the function to various properties of hydro- 
carbon molecules. The PEF gives atomization energy of many hydrocarbon molecules. Adsorption 
and chemisorption energy of various systems on diamond and graphite surfaces were calculated. The 
PEF model intramolecular chemical bonding in a variety of small hyrocarbon molecules as well as 
graphite and diamond lattices. The parameters of the PEF form a long table; they are not given here. 
One set of parameters include 63 entries and a second set of parameters includes 64 entries. 

2. I .6. C~elik~wsky-Phillips-K~mal-Strauss potential q 
This PEF was developed for silicon and carbon [ 151. 

@ = 62,3 = c Uij;k, 
i<j;k 

uij;k = $ exp [-BIT;.] - : exp [-p2~i.1, 
II 

Sij = 90 + SlsijsJi, s;j = 1 + (cos(3oijk)), (f(Qijk)) = [f]/[l], 

[f('ijk)] = kgj.f(Bijk)exp [-(n,eik + A?r$k)], rijk = i(rij + yik). 

The PEF was fitted to covalent-metallic phase transitions. It gives energies and structures of silicon 
clusters. The PEF was also parameterized for carbon and applied to C,,. Parameters of the PEF for 
silicon and carbon are given in Table 2. 

2.1.7. Khor-Das Sarma potential (I) q 
Developed for elemental tetrahedrally bonded semiconductors (C, Si, Ge) [ 161. 

@ = 42.3 = c Ulj;k, 
i<j;k 

Uij;k = Afil [eKarfi - gij( 1 + hlj)] , 

f, = e-B(r’J-R~) , hij = kFj[COS q(tlrjk - 0i) - 11. 
1. 

The parameters determined by fitting the PEF to the bulk modulus, the bond-bending force constants 
of the diamond structure. The PEF gives cohesive energy and equilibrium interatomic distances for 
various structures. Parameters of the PEF for C, Si, and Ge are given in Table 3. 
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Parameter Si c 

A (eVA’) 182.44 45.59 

/iI (A -I) 0.550 0.80 
pz (2) 0.151 0.35 

go (eVA) 7.08 1.33 

81 (eVA) 2.644 6.09 
7.1 (2/n)4 (2/k)” 

j-2 
0 --4 

(A ) 0.1773 0.96 1 

Table 3 

Parameter C Si Ge 

A (eV) 10 237.546 
&I 0.938766 

0 (A-‘) 3.20244 

EL (A-‘) 3.05075 

; 44.85709 0.08596252 

^, 3.10786 
v 0.1824903 

2794.2386 1278.555 

0.08251716 0.3481879 

3.13269 2.31239 

1.34146 I .54775 

0.6249096 0.381135 
25.44123 17.79861 

3.38218 3.22877 

0.90084597 0.6460521 

2.1.8. Khor-Das Sarma potentiaE (II) q 
This PEF was developed to study adatoms on Si( 1 I 1) surface [ 171. 

Q, = & = C Uij;k, u,j;, = Ae-fi(r,,-Ro 
[ 
e-“‘” - 

I i j:x 
BOe+ G( 8)F( 0)/Z;] , 

Z; = C exp [-fi(r;i - Ri)“], 

At)jik 1 Qj;k - Oi, 

G(Q) = 1 + k$j[COS(~ no,,, - I)], 
1. 

F(O;ik) = exp[-Pl(Atljik)“] + exp [p2(A0/;k)“‘] - 1. 

This PEF is a modification of Khor-Das Sarma potential (I). The additional parameters of the PEF 
for H3 on Si(l 1 1) system: pi = 15.08725154, yi = 2.04101446, fi? = 0.80277415, JJ~ = 0.90213443, 

vl = 0.52091562. 

2.1.9. Khor-Das Sarma potential (III) q 
Developed to study surface reconstruction of Si( 1 1 1) surface [ 181. 

@ = & = C uijik, Uriik = Ae-fi(“lpR1) 
[ 
e-“‘ll - 

I < j;k 
Boeei’,! G( 0)/Z:] , 

Z, = C exp [-p(rij - R;);‘], G(0) = F(o) 1 + k~,[COS(V Aeji, - I>] 3 
i [ 4 1 

A0;i/_ = O,, - 81, F(B) = exp [-Pl(AQjik)“] - c [l - exp [-bz(AQ,ik)“]] 
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This PEF is a modification of Khor-Das Sarma potential (II). The different and additional parameters 
of the PEF for Si(1 I 1): pi = 1.96535918, y1 = 0.74146749, j32 = 0.57664720, y2 = 0.30135348, 
c = 0.85. 

2.2. Group-II EMBPEFs (@I,) 

2.2.1. Bauer-Maysenholder-Seeger potential 110) 
This PEF was developed to investigate point defects in FCC metals [ 191. 

Parameterized for FCC metals (Cu, Ag, Au), used in point defect properties. The PEF was fitted to 
lattice constant, elastic constants, and cohesive energy. It was used in the calculation of point defect 
properties of Cu, Ag, and Au. Various set of parameters were used in the PEF to investigate the 
parameter dependence of some properties of the FCC metals Cu, Ag, and Au. 

2.2.2. Pearson-Takai-Halicioglu-Tiller potential 111) 
This PEF was developed for silicon [20]. 

@ = 42 + $3 = c r/jj + c wijk, 
i<j i<j<k 

The PEF was initially parameterized for silicon. The parameters were fitted to the bond lengths 
of the dimer and trimer and the lattice parameter and cohesive energy of the diamond structure. 
This PEF was used to study bulk phase transitions, surface reconstructions, surface point defect 
formation and diffusion, step reconstruction and interaction. The same potential has been extended to 
binary and ternary systems, e.g., GaAs, Si-GaAs, Al-GaAs, Au-GaAs [21]. Parameters of the PEF 
for monoatomic (A), binary (A-B), and ternary (A-B-C) systems are given in Table 4, 5 and 6 
respectively. 

Table 4 

Quantity Si Au Al Ga As 

&AA (ev) 2.817 0.976 1.216 1.004 1.164 

ro,, (A) 2.295 2.6685 2.520 2.461 2.491 

ZAAA (eVA9) 3484.0 2009.0 2241.0 1826.4 2151.9 
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Quantity Ga-As Al-Ga Al-As Au-Ga Au-As Si-Ga Si-As 

EAB 1.738 1.121 2.060 0.886 1.750 1.700 2.500 
%H 2.448 2.490 2.430 2.554 2.535 2.378 2.393 
zA4B 1900.0 2093.3 3000.0 278.7495 6000.0 2809.0 4500.0 
ZABB 4600.0 1955.3 5000.0 1237.6936 5600.0 2265.0 5000.0 

Table 6 

Quantity Al-Ga-As Au-Ga-As Si--Ga-As 

ZAUC 2500.0 3270.0 5000.0 

2.2.3. Biswas-Hamann potential (I) 1121 
This PEF was developed for silicon [22]. 

CD = 42 + 43 = C Uij + C lF;,k, 
icj i<j<k 

The PEF was fitted to energies of bulk, surface, layered, and self-interstitial structures. It was ap- 
plied to structural properties of bulk and clusters of silicon. Parameters of the PEF for Si: i., = 

3.946668 A-‘, A2 = l.l91187A-1 , A, = 26829.36eV, A2 = -42.59863 eV, cc0 = 1.246156A-‘, 
0 -I 

(xi = 1.901049A , a2 = a3 = cx4 = a5 = x(j = 1.786959A-’ , Co = 91.39775 eV, C, = 16440.13 eV, 
C2 = 9580.299eV, C, = 6663.147eV, C, = 3987.710eV, Cs = 2046.722eV, C, = 701.8867 eV. 

2.2.4. Biswas-Hamann potential (II) 113/ 

This PEF was developed for silicon [23]. 

@ = 42 + 43 = c &'j +,<F<k wijk, 
iij 

v3(7,j,~;k,()) = h$I(~ij)$I(Yik)(COS 8 + +)' +B?r1/2(r~,)IC/2(Y,k)(COS 8 + ;)'> 

The PEF was fitted to energies of bulk, surface, layered, and self-interstitial structures. It was ap- 
plied to structural properties of bulk and clusters of silicon. It is appropriate for properties of the 

tetrahedral structure. Parameters of the PEF for Si: 2, = 0.5200836 Ap2, JU2 = 0.420693 1 Ap2, A, = 

14229.22eV, A2 = -107.0338eV, aI = 0.3034373Ae2, c12 = 0.3191903Ae2, B, = 13.02990eV, 
B2 = 0.6720739 eV, r, = 3.9527357 A, ,U = 0.3 120580 A. 
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2.2.5. Stillinger- Weber potential 114/ 

This PEF was developed for silicon [24]. 

@ = 42 + 43 = c uij + c wijk, 
icj lcjck 

U, = Ef2(rijlD), wijk = &f3(ri/07 rj/a, rk/o), 

f2(r) = 

i 

A(BrPP - r-4)&-a)-‘, r < a, 

0, r>a, 
I 

f3(ri, rj, rk) = h(rij, rik, ejik) + h(rji, rjk, eijk) + h(rkiy rkj, eikj), 

h(rrj,Yik, 8jik) = Le [yir,,-a)-‘+g(r,l-a)-‘l 
X (f + COS ejik)'. 

The PEF was applied to solid and liquid forms of Si. It also gives the structural properties of a-Ge 
and crystalline Ge. It was used to calculate thermodynamic properties of the crystalline phase and 
the photon dispersion relations of the crystals. 

Parameters of the PEF for Si: A = 7.049556277, B = 0.6022245584, p = 4, q = 0, a = 1.80, 

3, = 21.0, y = 1.20, D = 2.0951 A, E = 50 kcal/mol. 
Parameters of the PEF for Ge [25]: A = 7.049556277, B = 0.6022245584, p = 4, q = 0, a = 1.80, 

J. = 31.0, y = 1.20, u = 2.181 A, E = 1.93eV. 

2.2.6. Gong potential 1151 

This PEF was developed for silicon [26]. 

@ = 42 f 43 = c uj + c Kjk, 
i<j i<j<k 

uij = A(BrLTP - rl~q)e(rl~-“)m’, Kjk = h(rji, rki) + h(rkj, rij) + Nrik, rjk), 

h(rji,&) = AeXp [y(rji - a)-’ + y(Q - a)-‘] X ll[Cl + (C0 + COS ejik)'](i + COS @jik)2. 

This PEF is a modified form of the Stillinger-Weber potential. The structural properties of small 
Si clusters were studied. The parameters of the PEF for Si is the same as the Stillinger-Weber 
potential, but the numerical values of the additional parameters A,, co, and cl are not given in the 
paper. 

2.2.7. Blaisten-Barojas-Khanna potential 1161 
This PEF was developed for beryllium [27]. 

@ = $2 + 43 = c uij + c Kjk, 
icj i-cjck 

ujj = Aeparl~ _ C fB(r) = 
1, r > r0, 

e-B(r,,/r- 1)5 
, r < r0, 
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W;‘lk = _D(N)e-B(r,,+r,i+r,i) + 
C’ D-G(i - l/N), N34, 1 

(Y;jW”,k ) 
3’ N < 4.1 

The PEF was fitted to small clusters and applied to various clusters of beryllium. It was also used in 
the simulation of the early stages of crystal growth. Parameters of the PEF for Be (in a.u., hartrees 
for energy): A = 77.27716, LX = 1.71169, B = 0.6961, C = 87.39774, D = 9.65426, /I = 0.495767, 
G = 35.945, C’ = 673.4099, B’ = f, r. = 4.04. 

2.2.8. Takai-Lee-Halicioglu-Tiller potential 1171 
This PEF was developed for carbon [28]. 

@ = 41 + 43 = C uiJ + C wiJk, 
l<J icjtk 

I/. II = e(41-q’rfl,) - q3 [i - (l/n) arctan[q4(rlj - q5)]] ” , 

K;k = z [P + ( cos tIi + h)(cos tIj + h)(cos Qk + h)] exp [-b2(rf: + ri + $)I. 

The parameters were evaluated from fits to various properties of C,, graphite, and the diamond 
crystal. Energy and structure related properties for bulk graphite and diamond were calculated. The 
PEF was also applied to carbon clusters. Parameters of the PEF for C (carbon): ql = 10.149804, 

q? = 7.936986A-‘, q3 = 261.527033eV, q4 = 0.527263~-‘, qs = 3.071221 A,, Z = 20.0eV, 

h = 0.205, p = 1.340, b = OS88A-‘. 

2.2.9. Kaxiras-Pandey potential 1181 
This PEF was developed for silicon [29]. 

@ = (62 + 43 = c uij + icTck wijk, 
I<j 

U,] = Ale- x,,; _ Aze-*Y;, 
wijk = hijk + hjkl + hkij, 

hijk = e~“‘r~+r”[Bg2(~ijk) + og"(e,k)], g(Q) = i + COS H. 

The PEF was based on quantum mechanical data base. It is used to simulate processes in a diamond 
lattice of Si, such as atomic exchange, point defects, vacancies, interstitials. Parameters of the PEF 
for Si (distance in A, energy in eV): A, = 57.316072. A? = 6.4373054, xl = 0.82335230, a2 = 
0.19061589, B = 10.188418, D = -9.113678, fi = 0.18642554. 

2.2.10. Feuston-Garofalini potential 1191 
This PEF was applied to vitreous silica (v-SiOz) [30]. 

u,i = Ajie-‘~~ P + Terfc($J, ALj= (l+~+~)be(“~+q~)‘~, 
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Kjk = h(rij, rik, @jik> + h( j 9 ?” k rji, ekji> + h(rki,rkj, eikj), 

Vi = Yil(rij - rF> + Y;/(Y;k - r:), AO; = COS ej;k - COS f3Jik. 

The PEF was used to investigate the structural properties of vitreous silica. The RDF and structure 
factor S(q) were calculated. Parameters of the PEF for vitreous silica (v-Si02): Asi- = 3.00 x 
lop9 erg, Ao.-o = 1.10 X lop9 erg, Asi-si = 1.88 X low9 erg, psi< = 2.29 A, PO-0 = 2.34 A, psl-si = 
2.34A, ilsi = 18.0 x lo-” erg, ysi = 2.6A, r$ = 3.0 A, cos f&, = -f, A.0 = 0.3 x 10-l erg, 

0 
y. = 2.0 A, r& = 2.6A, cos 8”. I 

sro-si = -3. 

2.2. Il. Murrell-Mottram potential 120) 
This PEF was developed for cubic crystals, and parameterized for silicon 1311. 

@ = 42 + 43 = c Kj + c wijk, 
i<j i<]-Ck 

Uij = D[ 1 + b(r;j - Y,)]e-b(r’f-r’~), w;jk = p(Ql, &, &)C-"Qt, 

W?~,Q~,Q~)=C,+CIQ~ +GQ:+C3(Q: +Q:>+GQ: +GQdQ; +Q:> 

+G(Q: - 3Q3Q;>, 

PI = Pij, p2 = pik, P3 = Pjk, p;j = Y;j - r,. 

The PEF was tested for different crystalline phases. The parameters were determined by fitting the 
PEF to the lattice energy, lattice constant, the elastic constants, and the Raman frequency of the 
diamond lattice of silicon. Parameters of the PEF for Si: D = 4.007 eV, r, = 2.155 A, Co = 0.98, 
C, = 0.87, C, = 6.20, C, = -2.89, C, = 6.28, C, = -6.14, C, = -10.98, a = 5.5. 

2.2.12. Al-Derzi-Johnston-Murrell-Rodrignez-Ruiz potential 1211 
This PEF was developed for diamond structure, and parameterized for C (carbon) [32]. 

@ = 42 + 43 = c uij + c wijk, 
iij iij<k 

Uij = -D( 1 + aP;j)e-““‘, w;jk = DP(Ql, Q2, Q3)e-“Ql, Pij = (rij - r,)/re 

p(Q,,Q2, Q3) = Co + GQI + C2Q: + C3(Q; + Q:> + GQ: + GQdQ; + Q:> 

+G(Q: - 3Q3Q;> f GQ; + GQ:(Q; + Q,‘> + C9(Q,’ + Q:>’ 

+GoQdQ: - 3Q3Q;). 
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The variables Qi and pi are defined same as in Murrell-Mot&am potential. The PEF was parame- 
terized by fitting to the lattice energy, lattice spacings, elastic constants, and the phonon dispersion 
curves of the diamond carbon. Parameters of the PEF for carbon: a = 6.70, D = 3.258 eV, r, = 
1.762& C, = 0.974, C, = -0.412, C, = 22.418, C, = -9.624, C, = -20.580, Cs = 14.075, 
C, = 9.474, C7 = 12.336, C8 = -42.283, Cs = -0.681, C,,, = - 13.435. 

2.2.13. Li-Johnston-Murrell potential 1221 
This PEF was developed for silicon [33]. 

@ = 42 + 43 = CU,, + C W,jk, 
i<J i<j<k 

CJ,, = -D( 1 + a2/)ij)C’p’i, W{jk = DP(Q,, Q2, Q3)e-“‘“‘, P,,; = (rl, - ~c)/Tc~ 

eQ,,Q2,Q3) = co + C,Q, + GQ: + WQ22 + Qf) + GQ: + GQdQ, + e:> 

+G(Q: - 3QjQ:) + GQ; + GQ:(Q: + Q:) + G<Q: + Q:)’ 

+GoQdQ; - 3Q3Q,‘). 

The variables Qi and pi are defined same as in Murrell-Mot&am potential. Parameters of the PEF 
are determined from the properties of solid silicon and it is used to study the structures and energies 

of silicon microclusters. Parameters of the PEF for Si: a2 = a3 = 6.50, D = 2.918 eV, r, = 2.389 A, 
Co = 3.598, C, = -11.609, C2 = 13.486, C, = -18.174, C, = -5.570, C, = 79.210, C6 = -6.458, 

C, = 23.383, C8 = -111.809, Cq = 9.705, C,,, = 38.297. 

2.2.14. Erkog potential (I) 1231 
This PEF was developed for cubic systems, applied to elemental microclusters [34]. 

@’ = 42 + 43 = c uij + i<Fck wijk, 
;<.; 

_ 2x, xjk = e-(4 +4 );4 _ 

The PEF was parameterized by using the dimer data and bulk cohesive energy of the elements. It 
is applied to study the structure and energy of the microclusters of the elements. Parameters of the 
PEF for various elements in different crystalline structures ((x = In 2 for all the elements) are given 
in Table 7. 

2.2. IS. Erkog potential (II) 1241 
This PEF was developed for cubic systems, applied to elemental microclusters [35]. 

@ = $2 + 43 = c uij + c wjjk, 
i<j icj-ck 
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Element Structure r0 (8) A (ev) n B 

& FCC 
Al FCC 

AU FCC 

cu FCC 

Ni FCC 

Fe BCC 

Li BCC 

C DIA 

Ge DIA 

Si DIA 

CS BCC 

K BCC 

Na BCC 

Ca FCC 

Pb FCC 

Pd FCC 

Pt FCC 

Cd HCP 

Mg HCP 

SC HCP 

Ti HCP 

Zn HCP 

2.48 6.60 2.312351 - 1.637860 
2.47 6.20 2.072844 - 1.553508 
2.47 9.16 2.806960 - 1.605480 
2.22 8.04 1.801698 -1.619242 
2.20 8.28 2.892470 - 1.290433 
2.02 3.60 3.195342 -1.061661 
2.67 4.28 0.907914 -1.888711 
I .24 24.84 1.68048 1 - 17.293200 
2.45 10.60 1.417253 -3.344464 
2.25 12.84 1.874024 -4.266564 
4.47 1.60 1.890859 -2.023773 
3.91 2.08 1.608210 - 1.979834 
3.08 2.92 1.250439 -2.436817 
4.28 0.56 3.117158 -0.145373 
2.93 3.40 3.422940 -1.586818 
2.57 4.40 6.950465 -0.681378 
2.34 14.84 2.854446 - 1.762003 
4.82 0.16 4.002629 -0.097190 

3.89 0.20 2.874987 1.112951 
2.79 6.60 1.950414 - 1.68420 1 

1.97 4.92 3.421186 2.287793 

2.35 0.24 4.566524 3.944883 

2n n 

exp [-2a(rij/rO)2] - exp [-a(rjj/ro)‘] 

I 

, 

Kjk = c3(&jAyk + uk_hkj + ujkfjki). 

The quantities A, n, a, and fijk are defined as in Erkoc potential (I). Parameters of the PEF were 
determined by using dimer data and bulk cohesive energy of the elements. The bulk stability condition 
has also been considered. The PEF has been parameterized and applied to FCC [35], BCC [36], 
DIA (diamond) [37], and RHO (rhombohedral) [38] elemental microclusters. Parameters of the PEF 
for some FCC, DIA, and BCC structure elements (rO, A, n, and CI values are the same as in Erkoc 
potential (I)) are given in Table 8. 

Parameters of the PEF for some BCC and RHO structure elements are given in Table 9. 

2.2.16. Erkog potential (III) 1251 
This PEF was developed for cubic systems, applied to elemental microclusters [39]. 

@ = ($2 + $3 = c u;j + c wijk, 
iij icjck 
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Element Structure C2 c3 Element Structure 

-4 
Al 
Au 
cu 
Ni 
Pb 
Pd 
Pt 

FCC 
FCC 

FCC 
FCC 
FCC 
FCC 
FCC 
FCC 

0.2338381 -0.1640650 c 
0.2635582 -0.1766508 Si 
0.2459298 -0.1768174 Ge 
0.1930176 -0.1261549 Li 
0.2860750 -0.1688664 Na 
0.4581129 -0.405280 1 K 
0.6671249 -0.3330730 CS 
0.2508586 -0.200467 1 FC 

DIA 0.4142327 -2.8628860 
DIA 0.2902 184 -0.4736164 
DIA 0.2278680 -0.2900124 
BCC 0.1375465 -0.0982322 
BCC 0.1752010 -0.1633922 

BCC 0.2 106423 -0.1680882 

BCC 0.265 1783 -0.2288656 
BCC 1.1177254 ~ 1.444257 1 

Table 9 

Element Structure i-0 (A) A (W n C-2 Ci 

V BCC I.77 9.96 2.739947 I.1 128382 -6.6226567 
Cr BCC 1.68 7.12 2.552045 1.1319147 -6.9582166 
Nb BCC 2.10 20.0 2.849568 0.529450 1 - I .49778 1 I 
AS RHO 2.10 15.84 2.375928 0.2602548 -1.0818833 
Sb RHO 2.34 12.40 2.409013 0.3218016 - 1.4833859 
Bi RHO 2.6596 8.16 3.071074 0.3438665 -0.8657999 

Table IO 

Parameter Au Ag cu 

345.923364 220.262366 110.766008 

38.9245908 26.0811795 46.1649783 

0.750775965 0.673011507 0.394142248 
0.229377368 0.120620395 0.207225507 
1.04289230 1.72376253 2.09045946 
1.05974062 1.81484791 I .49853083 

2.470 2.480 2.220 

0.169729418 0.193714755 0.150036137 

0.530820957 0.254330241 0.140549073 

1487.33 142 784.19049 1 194.576839 

WC’) = U- fk + UikfJ + U’ f 
1 + 3 cos t); cos 0, cos 8x 

Ilk 11 /k ,) wg.’ = 
CTijrikrjk I3 

3 .f; = exp [-(r;‘, + r,i)/$. 

The parameters of the PEF were determined by considering the bulk cohesive energy, bulk stability 
condition, and bulk modulus of the element considered. This PEF satisfies the crystal stability and 
gives the elastic constants of the elements considered reasonably. Parameters of the PEF for Au, 
Ag, and Cu (energy in eV, distance in A) are given in Table 10. 



96 $. ErkoglPhysics Reports 278 (1997) 79-105 

2.2.17. Erkoc potential (IV) 126) 
This PEF was developed for cubic systems, applied to copper clusters [40]. 

@ = $2 f 43 = c &j + c 6;k, 
iij i<j<k 

(21) U<i = D21 Uij (22) + 022 Uij ) e= 1,2, 

(32) Wijk = Djl Wfk” + 032 Wijk ) w;y) = uy)fk + u,‘,“‘f, + u;y’fi, 8 = 1, 2, 

fj = exp [-(7; + ri’,>/$ 

The parameters of the PEF were determined by considering the bulk cohesive energy, bulk stability 
condition, and elastic constants (C, ], C,Z) of the element considered; therefore it satisfies the bulk 
modulus of the element considered. This PEF also satisfies the crystal stability of the element 
considered. Parameters of the PEF for Cu (energy in eV, distance in A): A, = 110.766008, A2 = 
-46.1649783, al = 0.394142248, a2 = 0.207225507, A, = 2.09045946, A2 = 1.49853083, D2, = 
0.4683918280, D22 = 0.2329419830, D3, = 0.0257056474, D3* = 0.0156041879. 

2.2.18. ErkoC potential (V) 1271 
This PEF was developed for FCC systems [41] 

@ = 42 + 43 = C U, + C Wijk, 
icj i<j<k 

~j=&[l;;r;;(~)m-~(~)‘]eur* 

qjk = ZIGI(rij, ik, Jk Y Y- > 0 (UT* + pZ;> + Z2G2(rij,Tik,f’jk) exp (w* + BZ;), 

GI (rij, rik, rjk) = 
1 + 3 COS 6i COS 6j COS ok 

(yijpikrjk)3 
7 

GZ(rij,rik,f”jk) = 

9 COS ok - 25 COS 38k + 6 COS(8i - Qj)(3 f 5 COS 2ok) 

y!.rP f? 
9 

*J rk Jk 

r0 r* = -, z; = 5 z; = ZIRO 
RO u-09 ’ Gp’ 

Here R. and r. represent the nearest-neighbour distance in the crystal, and equilibrium separation 
of the dimer, respectively. The effect of many-body interactions on the bulk properties of solids has 
been investigated for the FCC structure by performing a parametric analysis. 

Parameters of the PEF for some FCC elements are given in Table 11. 

2.3. Group-III EMBPEFs (Q,,,) 

2.3.1. Bolding-Andersen potential 1281 
This PEF was developed for silicon [42]. 

@ = 42, 
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Element m n Z; Z; r* x /r 

Kr 11 7 0.06 0.0 1.00161 0.0 0.0 

Xe 12 6 0.08 0.0 1.00026 0.0 0.0 

Al 11 6 0.40 0.06 0.87765 -1.0 -1.0 
cu 10 6 0.35 0.14 0.87143 -1.0 -1.0 
Pb 10 6 0.25 0.05 0.92256 PI.0 -1.0 

Pd 12 5 0.03 0.22 0.93932 -1.0 -1.0 

T-CR-D, 

i sin[ix(r - R)/D], R-D < r < R+D, 

r > R+D, 

V,(r) = i( Vbond(r) + Pti(r)), V,(r) = al{tanh[a2(r - a3)] - l}, 

V,,(r) = i( Vbond(r) - Ifanti( - Vn(r), Vbond(r) = -De 

Vant’(r) = (b8 + bgp + blop2)e- hTP 3 p=r--ye, 

1:: = f . f: 
I 2 

C a4SjkS,k + C 
k#i,j k<ffi,/ 

12 = 1 + ZlT’ kF,[SikP((jlik) + SjkP(o;jk)] Z,, = C (sik + Sjk), 
1. k#i,i 

P(0) = 5 d,cos”(0); 
1, 

Sik = S(rjk) = S(r) = vR(r) + Vn(r> 
PI=0 fc(r) vR(re) + &(t-,)’ 

Z; = S(Z;i)S(Zl)ep’3; A= CF3+ C F4+ C Fs, 
k#Lj I, f#i. j k.i,mfi.i 

1, z < 2, 
S(Z) = Cl + c*z + c3z2 + c4z3, 2 <z G2.5, z; = c ‘%k, 

0, z > 2.5, kfi,/ 

Fj = ax&Sik + --% 
1 + Zij 

[sik(l - $k) + s,k<l - Si)] > 

r < r,, 

r>re, 

F.q = alo<sik&sjksjf> + & [siksj,( 1 - Si/)( 1 - s,) + sifsjk(l - Sik I( 1 - S/f )I 
‘J 

Sif sjk 
-++ 

SikS,/ 

r? rZ 
+- 

lf Jk 
r? r? 

ik I/ 
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+al3(Si/l?yS. S- S S S. S. S. S. S S + Si~Sj~Si(SjkSk~S/~), un Jk k? /m m Jm zk J/ km /m 

The parameters were chosen to fit a variety of data on silicon, including the structure and energy of 
small clusters, the crystal structures, the elastic constants, and the surface properties. The PEF was 
used to model small clusters, crystal phases, point defects, and surface reconstructions. Parameter 
set of the PEF contains 36 entries; they are not given here. 

2.3.2. Brewer-Garrison potential 1291 
This PEF was developed for silicon (covalent solids) 143). 

43 = $ .[ a2lij(&j + &i + ljj) + al(liiiljj - 2) 
1 
, 

(R? - 3a2)2 
, si = R4 _ R4 . 

I max 

The PEF was developed for covalent solids, applied to Si. The PEF is based on valence force field. 
The PEF predicts the phonon dispersion relations, cohesive energy, room-temperature Debye-Waller 
factor, and stabilization energy of the { 1 0 0) symmetric dimer reconstruction. Parameters of the PEF 

for Si: a = 1.357& DI = 3.0034A2, D2 = 1.2877A2, R,,, = 3.65 A, A = 97013 eV, B = 3.33 A’, 

Qm,, = 6.73 A2, al = 0.399 eV/_k’, a2 = 0.157 eV/A’. 
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2.3.3. Cieplak-Kollman potential 1301 
This PEF was developed for aqueous solutions of Li+ and Naf ions [44]. 

+ c AjJe-B"('"~'""") (e-B!<(r,,-r,,,,,,) _ 2) ) 

iii 

F = 1 _ ~;,326C-k 

R,, = R,,/0.529177, R,, = 0.94834673 x Roe. 

E,-i = C 
I 

VGG qiq,j I 4GG ~- 
I=W, j=ion rij r!? 

II 1 r; ’ 

‘4, = i;i(r,* + ry2, ci = 2E;(r,* + r; I”? 

The PEF was developed for the systems containing Hz0 molecules and Li+ or Na+ ions. Ion solvation 
enthalpies are calculated. The relative free energy of hydration of Li+ and Na+ is calculated. The 
parameter set of this PEF contains 30 entries; they are not given here. 

2.3.4. Mistriotis-Flytzanis-Farantos potential 1311 
This PEF was developed for silicon clusters [45]. 

CJ& = C A(Br: - l)e”“Ji-R’, rj, < R, 
l<j 

43 = ,<gkthjik -I- 

h,,k = //+frk( 1 _ ,-Q(~~~~~,~~+~.‘3)~), fr, = eWrR), 

$4 = c (Yijkl + gjikl + gk<ji + Ylijk )I g,.jkl = &-ljf;,Ak.f id 1 
i<l<k<l 

A(,k[ = (COS 8, + f)’ + (COS ejl, + i)’ + (COS 6ki[ + i)‘. 

_ e-QAvii ), 

This was applied to silicon clusters, Si,, n > 6. The PEF was fit to lattice constant, cohesive energy, 

and the melting properties. Parameters of the PEF for Si: A = 16.30076 eV, B = 11.58113 A”, a = 
2.095 1 A, R = 3.77118 A, IL3 = 4.0, A4 = 47.0, y = 2.4, Q = 5.0. 

2.3.5. Mistriotis-Froudakis-Vendras-Flytzanis potential (32) 
This PEF was developed for silicon clusters and surfaces [46]. 
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43 = i<%k(hjik + hi/k + h;k,), hjik = /lxhjjfik( 1 - ~KQ(~“~(~J~~+~‘~)~), 

$4 = i<,Fk<,(gijkl + gjikl + gkijl + glijk), grjkl = 14Ajhkfk,(l - e-QA’ir’)y 

nijk[ = (COS 8, $- 4)' + (COS 8,jk[ - i)2(COS o[jk[ + 1)2 + (COS 8jk, + 3)'. 

The PEF simulates silicon cluster properties and Si( 1 1 1) and Si( 10 0) surface reconstructions. This 
PEF is the modified form of the previous PEF. Parameters of the PEF for Si: A = 16.3 eV, B = 

11.581 A4, a = 2.095& R = 3.77A, & = 4.0, I4 = 17.0, y = 2.4, Q = 5.0. 

2.3.6. Daw-Baskes potential ]331 
This PEF was developed for metals [47]. 

@ = c Fi(Ph,i) $- c d)i,j(ri,j), 
i i<j 

Ph,i = ,z p,“(rij), 

p;(Y) = L?lPj,(f") + tZ2pjz(Y), 4ij(r) = zi(‘)rz,(‘)9 Z(r) = Z,( 1 + fiY)e-‘r. 

This PEF is called embedded-atom method (EAM). EAM based on density functional theory, to 
calculate the ground-state properties of metal systems, such as total energy, lattice constant, elastic 
constants, sublimation energy, and vacancy formation energy, surface energy and surface relaxation 
of various surfaces of metals. Properties of H in bulk metal, binding site and adsorption energy of 
H on metal surfaces were also studied. Parameter set of this PEF contains many variables; they are 
not given here. 

2.3.7. Price-Parker-Leslie potential 1341 
This PEF was developed for silicates (Mg2Si04) [48]. 

The PEF was derived empirically using data from simple binary oxides. The lattice dynamical and 
thermodynamic properties of the Mg2Si04 polymorphs were predicted. The PEF was used to model 
the infrared and Raman behaviour of forsterite (Mg,Si04). The phonon dispersion relationships of 
the Mg2Si04 polymorphs predicted by the PEF were used to calculate the heat capacities, entropies, 
thermal expansion coefficients and Gruneisen parameters of these phases. The phase diagram of this 
system was constructed. Parameters of the PEF for Mg2Si04 system: qMg = +2.0, qsi = +4.0, qO = 
+0X48, A,, = 1428.5 eV, Asi* = 1283.9 eV, Am = 22764.3 eV, B,, = 0.2945 A, Bsi+ = 

0.3205 A, BM = 0.1490& C&, = 10.7 eVA6, Coo = 27.88 eV Ab, kpsi, = 2.09 eV/rad2, 

kO_Shell = 74.9 eV/k2. 



2.3. cY. Price- Wd-Purker potential (351 
This PEF was developed for silicates [49]. 
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The PEF was used to investigate the properties of perfect high-density silicate crystals, including their 
elastic and spectroscopic characteristics. The simulation of phase relations and defect properties were 
investigated. The activation energies for diffusion in forsterite and perovskite were calculated. The 
high-temperature superionic conductivity of magnesium silicate perovskite was calculated. Parameters 
of the PEF for MgzSi03 system: qM, = f2.0, qs, = +4.0, q. = +0.848, AMe) = 875.0eV, 

o As,+, = 1283.9 eV, AcFo = 22 764.3 eV, BMg* = 0.3225 A, Bs,+j = 0.3205 K, Bo-(j = 0.1490 A, 

C s,* = 10.7 eV Ah, Coo = 27.88 eV A’, kws,- = 2.09eV,lrad2. ko_Shell = 74.9eV!A2. DcF,,,,,+, = 

120.0 eV A”. 

1.3.9. Erkoc potential (VI) j361 
This PEF was developed for cubic systems. Applied to FCC metal microclusters (Cu, Ag, Au) 

[501. 

The parameters of the PEF were determined by considering the bulk cohesive energy and bulk 
stability condition. The PEF satisfies the crystal stability, and gives elastic constants and bulk modulus 
reasonably for the elements considered. Energy and structure of microclusters of the elements have 
also been studied. The parameters of the PEF for Cu, Ag, and Au (energy in eV, distance in A) 
are given in Table 12. 

Table 12 

Parameter CU Ag AU 

I 10.766008 220.262366 345.923364 
2.09045946 I .72376253 I .04289230 
0.394142248 0.673011507 0.750775965 

-46.1649783 -26.08 I 1795 -38.9245908 
I .49853083 I.81484791 1.05974062 
0.2072255507 0.120620395 0.229377368 

0.436092895 1.00610152 0.888911352 
0.245082238 0.22 1234242 0.254280292 
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Element d (A) A (eV) B c’ (A) Ql Cl c2 

V 3.692767 2.010637 0.0 3.80 -0.8816318 I .4907756 -0.3976370 
Nb 3.915354 3.013789 0.0 4.20 -1.5640104 2.0055779 -0.4663764 
Ta 4.076980 2.591061 0.0 4.20 1.2157373 0.0271471 -0.1217350 
Cr 3.915720 1.453418 1.8 2.90 29.1429813 -23.3975027 4.7578297 
MO 4.114825 I.8871 17 0.0 3.25 43.4475218 -3 1.9332978 6.0804249 
W 4.400224 I .896373 0.0 3.25 47.1346499 -33.7665655 6.2541999 
Fc 3.699579 I A89846 1.8 3.40 1.2110601 -0.75 10840 0.1380773 

2.3.10. Ackland potential 1371 
This PEF was developed for covalently bonded systems, particularly for silicon, This was applied 

to crystal, point defect, and surface properties of silicon [51]. 

The parameters of the PEF were determined by considering the cohesive energy, lattice parameter, 
and bulk modulus of diamond silicon. Parameters of the PEF for Si: A = 208442.8, B = 16.63588, 
CI = 5.673585, /I = 1.144811. 

2.3.1 I. Finnis-Sinclair potential j381 

This PEF was developed for transition metals, and was applied to vacancy and surface properties 
of BCC transition metal elements [52]. 

4(r) = (r - d)’ + P(r - d)3/d, r<d, 

= 0, r > d, 

V(r) = (r - c)2(co + C’IT + c2r2), r<c, 

= 0, Y > c. 

The parameters of the PEF were determined by considering the lattice constant, cohesive energy, 
elastic constants, shear modulus, and Cauchy pressure of the elements considered. Parameters of the 
PEF for some BCC elements are given in Table 13. 
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List of the EMBPEFs parameterized for the element(s) and/or systems 
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Potential 

@, 

# Element(s) and/or system 

Tersoff (I) 
Dodson 
Tersoff (II) 
Brenner ( I ) 
Brenner ( I I ) 
Chelikowsky et al. 
Khor-Das Sarma (I) 
Khor-Das Sarma (II) 
Khor-Das Sat-ma (III) 

a,, 

Si 
Si 
Si, C 
C 
Hydrocarbons 
Si, C 
C, Si, Ge 
H3-Si( 1 I 1) 
Si(1 11) 

Bauer et al. 10 
Pearson et al. 11 
Biswas-Hamann (I) 12 
Biswas-Hamann (II) 13 
Stillinger-Weber 14 
Gong 15 
BlaistenBarojas-Khanna 16 
Takai et al. 17 
Kaxiras-Pandey 18 
Feuston-Garofalini 19 
M urrell-Mottram 20 
Al-Derzi et al. 21 
Li et al. 22 
Erkoy (I) 23 

Cu, Ag, Au 
Si, GaAs, Si-GaAs, Al-GaAs, Au-GaAs 
Si 
Si 
Si, Ge 
Si 
Be 
C 
Si 
v-Si02 
Si 
C 
Si 

Erkoc (II) 

Erkoc (III) 
Erkoc (IV) 
Erkoc (V) 

@I,, 

Bolding-Anderson 
Brenner-Garrison 
Cieplak-Kollman 
Mistriotis et al. 

24 

25 
26 
27 

28 
29 
30 
31 

Ag, Al, Au, Cu, Ni; Fe, Li; C, Ge, Si; 
Cs, K, Na;Ca, Pb, Pd, Pt; Cd, Mg, SC, Ti, Zn 
Ag, Al, Au, Cu, Ni, Pb, Pd, Pt; C, Si, Ge; 
Li, Na, K, Cs, Fe;V, Cr, Nb;As, Sb, Bi 
Au, Ag, Cu 
cu 
Kr, Xe, Al, Cu, Pb, Pd 

Si 
Si 
Aqueous solutions of Li+,Na’ 

Si,, 
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Potential 

Mistriotis et al. 
Daw-Baskes 
Price et al. 
Price et al. 
Erkoq (VI) 
Ackland 
Finnis-Sinclair 

# Element(s) and/or system 

32 Si 
33 Metals 
34 MgSiO, 
35 MgSiO, 
36 Cu, Ag, Au 
37 Si 
38 V, Nb, Ta, Cr, MO, W, Fe 
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