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Stochastic properties of strongly coupled plasmas
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Stochastic properties of equilibrium strongly coupled plasmas are investigated by a molecular dynamics
method. The Krylov-Kolmogorov entropi and the dynamical memory timg, are calculated both for
electrons and ions with mass ratios-100°. Two values oK entropy for ions are discovered corresponding to
electron and ion time scales. The dependence ofkttentropy on the number of particles, the nonideality
parameter, and the form of the interaction potential is investigated. The problem of the accuracy of molecular
dynamics simulations is discussed. A universal relation betwagrand the fluctuation of the total energy of
the system is obtained. The relation does not depend on the numerical integration scheme, temperature, density,
and the interparticle interaction potential, so that it may be applied to arbitrary dynamic systems. Transition
from dynamic to stochastic correlation is treated for both electron and ion velocity autocorrelation functions,
for Langmuir and ion-sound plasma wave dynamic structure factors. We point to quantum uncertainty as a
physical reason which limits dynami®lewton correlation for times greater thag,.
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I. INTRODUCTION to 7,,. However, it was supposed thai=\_"*.
The dynamic memory timé,, [6,7,29 is a characteristic
The divergence of particle trajectories in many-body sys-of a simulation model. It determines the accuracy of calcu-
tems and the Krylov-Kolmogorov entropyK(entropy, the |ations of system properties such as time correlation func-
Lyapunov exponentare of considerable interest in studies of tions and the dynamic structure factor in the molecular dy-
the origin of irreversibility[1-12]. They were investigated namics method. The times,, 7,,, 7, and 7, are of close
using the molecular dynamics method for neutral particleshature, and the difference between them lies only in the type
[2-8,13,14 and different plasma modeld2,15-17. An-  of mixing noise which is taken into account. The physical
other point is that thé& entropy determines the rate of en- meaning of the timé,,, its relation to thek entropy, and the
tropy growth in nonequilibrium process¢$,5,18, so that total-energy fluctuations are studied for plasmas in the
the K~! can be considered as an important relaxation timepresent paper.
scale. The interparticle interaction potentials employed, and the
Another quantity of interest is the predictability timmg, method for studying the divergence of trajectories, are pre-
which was introduced in Ref§19-22. It determines the sented in Sec. Il. Results for electron and Krentropy and
time interval during which the behavior of a dynamic systemthe dynamical memory time are given in Sec. lll. Two values
can be predicted from initial conditions and deterministicof K entropy for ions were found. The relation betweenkhe
equations of motion. Kravtsov and co-work¢Pd—24 con-  entropy and the rate of entropy growts, is discussed in
sidered the measuring noise, fluctuation forces, and unceGec. IV. A universal formula is obtained which relates khe
tainty about the differential deterministic equations of theentropy to the dynamical memory time and the total energy
system as the reasons why, has a finite value. The pre- fluctuation. Section V is devoted to distinguishing between
dictability horizon 7, is defined as a limiting value of,, dynamic and stochastic correlations for both electrons and
when the levels of measuring noise and knowledge uncelions in strongly coupled plasm&SCP’9. The origin of the
tainty are neglected. Both,, and 7, are proportional to noise is related to the quantum uncertainty resulting from the
A;1, where) . is the maximum positive Lyapunov expo- weak degeneracy of electrons.
nent. The proportionality coefficient is logarithmically de-
pendent on the noise level. It was supposed that the system
correlation time isr,=0.5\, " [19,21,23. Il. SIMULATION
Zaslavsky[1] used the term& entropy and the correla-
tion uncoupling timer,. The K value corresponds ta ,
averaged over the phase space, andrthealue corresponds We consider a two-component fully ionized system bf 2
single charged particles with masses(electrong and M
(iong. The molecular dynamics method(MDM)
*Email address: bogous@orc.ru [2,7,8,13,26—3pwas applied. Classical equations of motion
"Email address: henry_n@orc.ru are solved numerically with periodic boundary conditions.

A. Plasma model

1063-651X/2001/683)/03640%9)/$15.00 63 036405-1 ©2001 The American Physical Society



I. V. MOROZOV, G. E. NORMAN, AND A. A. VALUEV PHYSICAL REVIEW E 63 036405

We use a “leapfrog” scheme of a second order approxima- i 2 2 1 2
tion which, being rather simple, ensures the conservation of _ Ar®, Av 3
the average total enerd0]. i 4
It is assumed that particles of the same charge interact via 207]
a Coulomb potential, whereas the interaction between par- 107
ticles with different charges was described by an effective ]
pair potential (“pseudopotential’) [31-37. Most calcula-
tions in the present paper were performed with the electron- 4
ion potential[32,38 1072

—elr, r>a *
DQei(r)=1 _ () y
107 t/t
wherea is a cutoff length. This approximation is used in | — —
order to avoid the formation of bound states in the system. In 0 05 1 15 2 25
the present simulations this parameter was taken t@ be _ i
—e%/ekgT, whereT is the equilibrium temperaturég is the FIG. 1. Square_d divergencas?: (1) electrons(3) |ons;Ar%:
Boltzmann constant, ane=3. This corresponds to the as- (2 €lectrons, (4) ions. y=1.5, M/m=10, andN=100. Ar is
sumption that all bound states beléwT are excluded from 9'Ve€N in Landau length units in Figs. 1-4.

the calculation of the Slater suf82]. Moreover, the propor- =1, ... | is the averaging index. It should be noted that real

tionality a~ T~ yields uniformity of the interaction poten- : o .
tial, and provides a similarity: i.e., any reduced value de-Loordinates are used here rather than their images in the ba-

pends only on the nonideality parametgre?n~Y3/kT, sic MD cell. Computatlon$2) and(3) were performed sepa-
i . A . rately for electrons and ions.
wheren=n.+n; is the total density of charged particles. Then Lvapunov exooner can be obtained from
At the first step of the simulation the system was brought yap P
to equilibrium for electrons and ions of equal masses, since (Av%(t))=AexpKt), (Ar(t))=B exp(Kt)
the equilibrium distribution of the coordinates of particles
does not depend on their masses. To obtain the required terat
perature of the plasma, equations of motion were solved with
additional Langevin forces and friction forces proportional to 4 <t<tp. (4)
velocity. In further calculations of the dynamical properties, ) ] ) ] .
these additional forces were dropped, and the mass ratio w&tere ti is a small time, after which the trajectory’s diver-
restored to the correct value. At this stage we also exclude@€nce starts to follow an exponential law. On the other hand,

the total momentum of the particles. So that a state of théhe exponential increase ¢Av?(t)) is limited by the finite
fully equilibrium isothermal plasma was achieved. value of the thermal velocity of particles. Thus, after a time

thm,

B. Calculation procedure t>t,~K ln(6kT/Am), (5)
In order to obtain the average Lyapunov exponent, a long
molecular dynamic$MD) trajectory was first computed for @ “saturation” occurg6-8], i.e.,
given plasma parameters. Then a numbef statistically

e?la, r<a,

2 — 2\ _
independent sample phase points was chosen from this phase (Av*(t))=2(v?)=6KT/m, (6)
trajectory, and the electrons were slightly randomly dis- 2reny )
placed at these points. The system trajectories were com- (Ars(t))=6D(t—ty) +(Ar<(ty)), (7

puted using these changed electron coordinates and th . . .
former values of the electron velocities and ion phase varil(lvzgﬁt)e d:?;lesrir:)rzsggeeffgziiz rrr]rsal velocity squared, amis the
ables as the initial conditions. After an averaging over :

=50-300 initial configurations, the squared divergences of

coordinates and velocities are calculated as IIl. RESULTS
1 NI A. K entropy for electrons
<sz(t)>:m 2 [ —vj (D12, 2 Examples of(Av?(t)) and (Ar?(t)) for electrons and
1k ions is presented in Fig. 1. The values o6 and Ar are
LN measured in KT/m)*? and e?/(kT), respectively. The val-
Ar2(t)) = — Nt 2 ues ofK turn out to be the same for both velocity and coor-
(Ar() NI % [ri(0) er(t)] ' @ dinate deviations. It is also seen that tKevalues for elec-

trons and ions are close to each other at the initial stage of
wherev |, (t) andv(t) [r{,(t) andr;(t)] are velocitiesco-  divergence. This might be related to the fact that a SCP is a
ordinate$ of particles for new and former trajectories, re- system in which the fraction of collective degrees of freedom
spectively; j=1,... N for electrons and ions, andk is comparable to unity39], or to a general property of sys-
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TABLE I. Dependence oK 7 on the number of particles. 177 Oq @
N 10 14 20 40 100 200
Ar?
Kr 11.1 12.5 11.7 11.8 12.1 12.4

1 0—10_

tems of particles with different masses. Note that the value of
K does not depend on the initial displaceméiso see Ref.

[15)).

107

B. Dependence oK entropy on the number of particles and
the form of the electron-ion potential

The dependence &, wherer= 2/, is the period of 4
plasma oscillations, on the particle numiberis weak(Table 107
[), which is in agreement with the results for systems of 00 05 10 15 20 25
neutral particled6,8,13. The average errors in Table | as
well as Table Il are about 2%, and correspond to the interval FIG. 2. Potential Eq(1): (1) electrons,(2) ions; Eg.(8): (3)
of scattering for the electron and ion results faw(t)) and  electrons(4) ions. y=1.5, M/m=10, andN=100.

(Ar?(t)) [17).

The above results were obtained for the effective pair po€ntropy for electrons and ions does not dependvbim at
tential [Eq. (1)]. In order to show the relative contributions the initial stage of divergence within the accuracy of the
of the Coulomb |ong range interaction and the non-Coulomipresent calculations. In the fO”OWing this value will be de-
short range part of the interaction koentropy, the compu- hoted asKe.
tations were performed for the following electron-ion poten- At t=ty, the quantity(Av(t)) for electrons reaches its

tial (insertion in Fig. 2: saturation value; therefore, &t-t,,, only ion trajectories
continue to diverge, as seen from Fig. 4. Computations for
®gi(r)=0.1kT(e’/ekTr) >~ e’/r. (80  M/m=10-10 (Figs. 4 and 5show that there is an expo-

. : . o , nential divergence for ions with another valuetoentropy
Since potentialg1) and (8) satisfy the similarity relations, depending orM/m, which will be denoted ak; . TheM/m
the valueKr depends only on the nonideality paramefer  gependence df., andK; is presented in Fig. 5. Whereas the
for a given potential. The results are presented in Fig. 2 angl,s; remains constant and equal to tie entropy for the

Table Il. It is seen that the form of the short range interaction,actrons. the second satisfy the inverse square rooKlaw
does not significantly affect th€ entropy in accordance with _ (M /m)il/z

the general concepts of the role of short range interaction in
SCP’s[39]. The K values for Egs(1) and (8) differ by a
factor 1.5. Neither of the electron-ion effective pair poten-
tials [31,33—-37 has a repulsive core, as in E@), which Another method to obtain the Lyapunov exponent con-
manifests the maximum discrepancy from Ef. The high-  sists of calculating two trajectories with different integration
temperature Deutsch potentj@4,35 is more shallow than time stepsAty andAt with identical initial configurations. In

Eg. (1), and Rostock potentialg31,36 might have deeper this case the trajectories differ at the first stage because of
minima than Eq(1). Test calculation$40] showed that the numerical errors. Further divergence reproduces exponential
difference ofK for these is within the factor 1.8 from E¢l)  growth[Eq. (4)] with the same value d, just as it should.

for temperatures from f0to 1 K. The case of pure Cou-

lomb electron-ion interaction was treated in Réf2]. M/ =1

D. Dynamical memory time

1075 J Ar? M/ =10
C. Results for ions. Mass dependence = %=102
The fact thatk depends only slightly on the number of 20 ] M/ =10
. - - 107
particles allows one to extend the calculations to greater ratio - M =10*
valuesM/m, taking N=10. The preliminary results were _ M/ 108
published in Ref[16]. The resultgFig. 3) show that theK 102 2 "
TABLE Il. Dependence oK on y and the form of the poten- 7
tial. 10 2
J14° t/'t
y 0.5 1.0 1.5 —
) 0 04 0.8 1.2
Potential Eq.(1) 18 11.9 9.8
Potential Eq.(8) 27 16.5 14.5 FIG. 3. Divergence\r? of ions at the first time scale for differ-

ent values of the mass ratip=1 andN=10.
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15 M%n =10? 1 R il
AV? ] % =10° AVZ_ g ‘/ﬁ«/“
) -2 o®
0.13 107
; s
0,01~ 107
1074 107
] t/t t
-3 -8 me
10 I I ' I I ' | 10 ' I I ! |
0 40 80 120 160 200 0 2 4 t/t 6
FIG. 4. DivergenceAv? of ions att>ty, for different mass FIG. 6. The squared divergence of velocities of elect(onem-
ratios. y=1 andN=10. bug and ions(circles. The lines present exponential fits corre-

sponding to Eq(4). y=1, M/m=100, andN=100.
The values of Av?(t)), normalized to the corresponding
thermal velocities for electrons and ions, are shown in Fig. Buith small deviations &r;,Av;) and (Ar,,Av,) because of

The point where the exponential trend reaches the saturatiqi; merical errors and the Lyapunov instability. This allows us
level corresponds to the tintg,e. In Fig. 6 the value of ¢ to calculate the functionéAr2(2t)) and(Av2(2t)) and ob-

is es'tim'ated as the moment of crossing of tvyo ;trqight Iinestain the dynamical memory time using a procedure analo-
At this time the system completely “forgets” its initial state, gous to that in Fig. 6. This value is shown in Fig. 7 as a

and thereforé,,, may be interpreted as a dynamical memoryyjanq1e  One can see that it lies close to the extrapolated
time. The results foty,., depending on the time step ratio .51, oft . in the limit At—0
me .

for the original and new trajectories, are presented in Fig. 7 g re 7 shows that the dynamical memory time for elec-
as crosses..Here the integration step for the o.r|g|nalltraject—rons depends only slightly on the step raio/At,. Our
tory was fixed to be equal toAty=0.003 [in units  c5icjations have also shown that it is true for differan;.
em /(kT) _4'??Xd10 s] when the stept for the new This fact can be used to plot the dependencé,fon the
trajectory was varied. time step for the original trajectory with any fixed value of

Th? dynamical memory time can also be calcglgted n theAt/Ato. The computation of the velocity divergence for ions
following way. On the original trajectory the velocities of the after the saturation of electrons gives the value of the dy-

part?cles are reversed at “”.‘e poiBfsty, . ... (see t.h(.e.insert. namical memory time,,;. The results for both,,, andt,;
in Fig. 7). The reversed trajectory returns to the initial point are presented in Fig. 8. The ratigJt,, is a fixed value, and

100 5
E 1.6
Kt
. t /T
10 = = i & | me/ _‘_J___—*——‘—___?——_———*
1.2

1 _E 0.8
0.1 0.4 —
] . ]
| M At/ AL,
0.01 T \IIIII| T IIHHI‘ T IIIIII| T \IIIH‘ T IIIHII| 0 T | T | T ‘ T ‘ T |
1 10 10? 10° 10* 10° 0 0.1 0.2 0.3 04 05

FIG. 5. Average Lyapunov exponent for ions at two time scales: FIG. 7. The dynamical memory time for electrons depending on
squares, initial stage; circles, after saturation of electrons. In ordethe trajectories time step ratiorosses with linear fit The triangle
to guide the eye, the power fits are drawn through data pojnts. corresponds to the result for trajectory reversing=1, M/m
=1 andN=10. =10, andN=100.
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177 Zaslavsky[ 1] considered the quantitg ~* as the correlation
t,./t] 10 uncoupling time(see Refs[5,18]). In order to compare these
definitions with the MDM, we briefly recall arguments for
1.6 Lt ./1: this interpretation 1,5,18.
| m The entropyS of a subsystem in equilibrium is defined by
A g the expression41]
15
S=kInAT, 9)

whereAT is the dimensionless statistical weight for the sub-

47 8 system. Consider the motion of the phase points located ini-
1 tially in a compact regiol\I' in phase space. According to
13 I Liouville’s theorem, the phase volume remains constant:
0.0001 0.001 Ato 0.01 AF(t) — AFO. (10)

~ FIG. 8. The dependence of the dynamical memory time on thé\ote, however, that the structure of the phase region changes
integration time step for electronsy{) and ions {m). At/Aty  gragtically. Trajectories which started from initially close
=0.5, y=1, M/m=10, andN=100. The triangles are the results (s insideA T, diverge exponentially with time, and the

of our simulations, straight line is a logarithmic (its slope corre- structure of the region becomes more and more stretched and
sponds tn=2). deformed; it is cut up, with fiords and may be fradta). As

a result, the effective size of the regioA]'(t), increases
with time. From Eq.(4) it follows that

does not depend oAtg, this so there is only one set of
points in Fig. 8.

The dependence df,; on the electron-ion mass ratio is
shown in Fig. 9. In accordance with the dependencéof
(Fig. 5), it also fits the square root law.

AT (t)=AT ge", (12)

when we use a formula likaT'(t)~r3v3, andh is propor-
tional to theK entropy. One can conclude from E¢8) and
IV. DISCUSSION (11) thath~K is really a rate of entrop$ growth resulting

In the present paper we have calculatedihentropy and ~ [TOM dynamic trajectory mixing1,5,18.
the dynamical memory time,, for electrons and ions in Our calculations show that the valuetgf may be treated

SCP’s. Let us now discuss how these quantities characteriZ2 @ time interval which is necessary for the voluirig(t)
stochastic properties of the system. As a preliminary issud0 reach its maximum valuaI';,,. One should consider

we start with the simplest one-component case. AT a5 @s its value at the end of the exponential growth.
During each subsequety, interval the procedure of filling
A. One-component system the volumeAT' ., repeats again and again without changing

its value. The value oAT,,, determines the entropy of the
state which is described by the MDM equilibrium phase tra-
jectory.
From the above, it is clear thif, has also the meaning of

the correlation uncoupling time. Contrary to the suggestion
t. of Zaslavsky[ 1], the values of,, andK ~* can differ remark-
— y ably. Besides the quantitative difference, there is a principal

T P difference between,, andK ~1. While K is a characteristic
100 of the many-particle system under consideration and does
not depend on a numerical scheme, the valug,adepends
on the accuracy of integration, which realizes the coarse
aaling graining procedure in this case. This fact was not taken into
o account in Ref[1].
10 The coarse graining parameterwas introduced in Ref.
[1] and was proposed to terd-0 at the end of derivation.
’ However it was assumed that the correlation uncoupling time
does not depend os, and remains finite whea—0. The
v quantity e is given by the numerical integration accuracy of
10 10? 10° 10° M 10° the MDM. It is evident that,,—% whene—0.

m

Physically, the value oK may be regarded as the rate of
the entropy growth due to dynamic trajectory mixing.

1000

f—’

. . . . . B. Two-component plasma
FIG. 9. The dynamical memory time for ions with different P P

masses. The grid allows one to fing values for definite species of ~ The previous arguments remain valid in this case too, but
ions. y=1 andN=10. now it is necessary to consider four quantities. The values of
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Ke andK; are characteristics of the system, and do not de- 12 K(tme _tmeO)
pend on the numerical integration accuraky. presents the 0’

rate of entropy growth due to the electron and ion trajectory
divergence at the initial stage, aq defines the rate of the
slower entropy growth at the stage when the electron trajec-
tory divergence is finished but the ion trajectory divergence 8-
continues. We emphasize, once more that at the initial stage
both the electron trajectory and ion trajectory divergences
proceed with the same rak&,.

The timest,, andt,,; are characteristics of the numerical
scheme. These values correspond to uncoupling of electron 4|
correlation and uncoupling of ion correlation. They give the
time intervals required for phase volum#§', andAT'; (and
entropy to reach their maximum values.

C. Universal relations 0 T T T T T T T

AE
The multiplierA~ (At)" in Eq. (4), wheren is an order of 0.001 0.01 04 /AEO !

approximation of the numerical integration schenme=@

for our cas@ Then from formula5) one obtains FIG. 10. The universal dependenceki,, on the total energy
fluctuations. Triangles, SCRA¢/At,=0.5, y=1, M/m=10, and
6kT/m=AexpKt,,), 12 N=100). Circles, Lennard-Jones system. Straight line,(E4).
K(tml_tmz):n |n(At2/At1), (13) Tr<tm<tR/Mv (15)

wheret,; andt,, are the dynamical memory times for the wherer, is a relaxation time for the process under stugly,

stepsAt; and At,, respectively. Expressiofil3) does not is the run duration, anél ~*2 is an accuracy needed. The

depend on the temperature, the number density, or the sykeft inequality in Eq.(15) is evident. The right inequality

tem studied.K does not depend on the time step, and itreflects the fact that the points on the phase MD trajectory

allows us to illustratet,(Aty) [Eq. (13)] in the form of Fig.  separated by the time intervg}, must be statistically inde-

8. The slope of straight line in Fig. 8 corresponds to thependent. Therefore, the real accuracy of averaging is ex-

logarithmic fit withn=2, in accordance with the numerical pected to be even better thah™ /2.

scheme used. Condition (15) can be naturally generalized to two-
The total energ)E is equal to the sum of potential and component equilibrium plasmas. In this case the valueg of

kinetic energies. The constancy of the eneligg fulfilled in ~ and the integration accuracy must satisfy

MD simulations only on average. Instant valuesEofluctu-

ate around an average value. So the MD trajectory does not i <tmi<tr/M, (16)

lie on the hypersurfacé=const, as for Newton or Hamilton

equations. It is located in a certain hyperlayer of thicknesgvhere 7; is the ion relaxation time. It is expected that the

AE>0 which envelopes the hypersurfaée- const[8]. The  averaging accuracy for electron characteristics is better than

value of AE is determined by the accuracy of the scheme ofM 12

numerical integratiofi6—8,30,42—4% Since( AE?)~ At", it When only electron characteristics are studied, it is suffi-
follows from Eq.(13) that cient to take
K(tm—tme) =IN((AE3)/{AED)). (14) Tre~tR- (17)

The form of this equation does not depend on the numeriln this case each characteristic must be averaged over the
cal scheme. The results for a plasma and the Lennard-Jon#&¥tial ion configurations. The number of these configurations
systen(45] are presented in Fig. 10. Formuted) relates the M determines the gccur_ad\yf/z. Sampling procedures for
K entropy and the dynamical memory time to the noise levethe initial ion configuration differ in equilibrium and non-
in a dynamical system and is consistent with general conequilibrium cases. The definition of ensemble of initial con-
cepts[19,21,22. It would appear reasonable that E44)  figurations for the nonequilibrium case is a separate problem
would be a universal relation, i.e., be applicable not only t46-48.
the MD systems which are used in computer simulations but
to any real dynamical systems affected by noise as well. V. ORIGIN AND IMPORTANCE OF THE DYNAMICAL

MEMORY TIME

D. General requirements to a numerical scheme Compare the values of the dynamical memory time ob-

From the above discussion it follows that the time step fortained with the time scales of electron-ion correlation, the
numerical integration must satisfy the inequalities study of which was started for equilibrium SCP’s in Refs.
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S(o,k) a) Var a)
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0.6 1
0.02 |
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0.01 .
i 0.2
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FIG. 11. The dynamical structure factors for wave numbers

equal to(a) ka,=0.958 and(b) ka,=0.857. The first maximum FIG. 12. Normalized velocity autocorrelation functions fay
corresponds to ion-sound waves, and the second to Langmuélectrons andb) ions. y=1, M/m=10, andN=100.
waves.y=1, M/m=10, andN=100.

not a simple one. It is seen from E¢$3) and(14) and Figs.
[26,37,38,4% The examples of our results for the dynamical 8 and 10 that the value @f, increases only logarithmically
structure factokDSF) and velocity autocorrelation functions with an improvement of the accuracy. The computational
(Vap) are presented in Figs. 11 and 12. facilities available allow one to decreadd by five orders
of magnitude even when refined numerical schemes are used
[42—-44. It would increaset,. only twice. Therefore the
range of stochastic correlations would still be retained.

The frequencies in the region of the electron DSF maxi- At the same time the excessive increase @f is of no
mum and to the right correspond to timest,,.. The same importance for physics. Recall that there are natural factors
is valid for Vg in the time interval wheV ¢ is greater than  which result in finite the dynamical memory time in real
0.1. Therefore, these correlations are of a dynanfidaw-  systemg9,10,21,22 These include a broadening of the par-
tonian nature. The electron correlations for thigg tail, i ticle wave packets, and diffraction effects at scattering.
the region of the DSF minimum, and to the left, correspondThese factors were taken into account in Réf,50 to
to the time interval when the dynamical memory of initial introduce a concept of quasiclassical trajectories, and to ob-
conditions is lost, i.e., the correlations have not a dynamicain the corresponding equations of motion; i.e., when pass-
but a stochastic nature. ing to the classical limit the leading terms in the Plank con-

It would be of interest to investigate whether the increasestant power expansion are retained. The equations obtained
of the dynamical memory time with improving numerical differ from Newtonian ones by additional random forces.
integration accuracy would influence correlation character irGertsenshtein and Kravts§24] paid attention to the role of
a range intermediate between dynamical and stochastic coweak inelastic processes. They considered perturbations of
relations. From a computational point of view this problem istrajectories under the influence of a thermal electromagnetic

A. Electron correlation
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field [19] and spontaneous radiation of low-frequency pho-action. The total uncertainty level for ions is expected to be
tons[23]. The fitting of the numerical integration errors to much less than for electrons. However, the ion correlation
the value of the quantum noise will be studied elsewhere. time scale is much greater than the electron time scale, and it
However, even now one can say that for the plasma inis sufficient for the exponential instability to bring the small
vestigated the quantum effects mentioned above are not neguantum uncertainty to a stochastic level for the ion DSF
ligible; in addition, the degeneration the degeneration paramong wavelength and the ,¢ tail.
eter is not too smal[26]. Taking into account that,,.
depends on the noise level only logarithmically, it is believed
that quantum uncertainty would lead to valuesgf which . . ) )
are of the same order as those obtained in this paper. Em- In this paper calculations of the dynamic memory time
phasize that here we discuss the dynamical memory time fotere performed for the specific case of MDM numerical
real SCP’s rather than for the computer model. schemes. Hence the valuestgf, andt,,; were determined
Thus the electron time correlations for SCP’s can be ofY the noise resulting from numerical errors. However, the
both dynamical and stochastic natures, depending on thi@ct that the dependence of the dynamical memory time upon
time interval studied considered. The possible slight differthe noise level is logarithmic, i.e., quite weak, allows one to

ences in the electron-ion effective interaction potentials dis€xtend the qualitative conclusions to the real SCP where fi-
cussed in Sec. 1l B do not violate this conclusion. nite values of dynamical memory time are determined by the

quantum uncertainty. Therefore, the correlations for SCP’s,
become stochastic for long wavelength regions of both Lang-
. ) . muir and ion-sound plasma, waves and for long electron and
~As seen from Figs. 11 and @3, and from the discussion jon v, tails. The specific values of the times of transition
in Sec. VA, ion correlations correspond to the time whenfrom dynamical to stochastic correlations depending on
electron correlations are stochastic, the stochastization ocCUfuantum effects will be considered elsewhere.

ring many times. This is the case in both Computer plasmas Note added in proof_The stochastic properties of one-

and real SCP's. . _ component plasma were analyzed using the close approach
As for the time scale for iorWag and ion sound, the described in Refd51-53.

situation is quite analogous to that for electrons. These cor-
relations are of dynamical character except in the long wave-
length region of DSF's and long tail of io¥,r where the
correlations become stochastic. Despite the fact that the ion
mass is much greater than the electron mass, the ion sto- The authors are thankful to W. Ebeling, Yu. A. Kravtsov,
chastization in real plasmas, as for electrons, is related to thé. G. Morozov, and V. V. Stegailov for valuable discussions
guantum uncertainty. The latter is the sum of the ion uncerand useful comments. The work was supported by the RFBS
tainty and the uncertainty induced by the electron-ion inter{Grant No. 00-02-16310
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