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Stochastic properties of strongly coupled plasmas
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Stochastic properties of equilibrium strongly coupled plasmas are investigated by a molecular dynamics
method. The Krylov-Kolmogorov entropyK and the dynamical memory timetm are calculated both for
electrons and ions with mass ratios 102105. Two values ofK entropy for ions are discovered corresponding to
electron and ion time scales. The dependence of theK entropy on the number of particles, the nonideality
parameter, and the form of the interaction potential is investigated. The problem of the accuracy of molecular
dynamics simulations is discussed. A universal relation betweenKtm and the fluctuation of the total energy of
the system is obtained. The relation does not depend on the numerical integration scheme, temperature, density,
and the interparticle interaction potential, so that it may be applied to arbitrary dynamic systems. Transition
from dynamic to stochastic correlation is treated for both electron and ion velocity autocorrelation functions,
for Langmuir and ion-sound plasma wave dynamic structure factors. We point to quantum uncertainty as a
physical reason which limits dynamic~Newton! correlation for times greater thantm .
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I. INTRODUCTION

The divergence of particle trajectories in many-body s
tems and the Krylov-Kolmogorov entropy (K entropy, the
Lyapunov exponent! are of considerable interest in studies
the origin of irreversibility@1–12#. They were investigated
using the molecular dynamics method for neutral partic
@2–8,13,14# and different plasma models@12,15–17#. An-
other point is that theK entropy determines the rate of e
tropy growth in nonequilibrium processes@1,5,18#, so that
the K21 can be considered as an important relaxation ti
scale.

Another quantity of interest is the predictability timetpr

which was introduced in Refs.@19–22#. It determines the
time interval during which the behavior of a dynamic syste
can be predicted from initial conditions and determinis
equations of motion. Kravtsov and co-workers@21–24# con-
sidered the measuring noise, fluctuation forces, and un
tainty about the differential deterministic equations of t
system as the reasons whytpr has a finite value. The pre
dictability horizon th is defined as a limiting value oftpr

when the levels of measuring noise and knowledge un
tainty are neglected. Bothtpr and th are proportional to
l1

21 , wherel1 is the maximum positive Lyapunov expo
nent. The proportionality coefficient is logarithmically d
pendent on the noise level. It was supposed that the sys
correlation time istc50.5l1

21 @19,21,22#.
Zaslavsky@1# used the termsK entropy and the correla

tion uncoupling timetu . The K value corresponds tol1

averaged over the phase space, and thetu value corresponds
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to th . However, it was supposed thattu5l1
21 .

The dynamic memory timetm @6,7,25# is a characteristic
of a simulation model. It determines the accuracy of cal
lations of system properties such as time correlation fu
tions and the dynamic structure factor in the molecular
namics method. The timestm , tpr , th and tu are of close
nature, and the difference between them lies only in the t
of mixing noise which is taken into account. The physic
meaning of the timetm , its relation to theK entropy, and the
total-energy fluctuations are studied for plasmas in
present paper.

The interparticle interaction potentials employed, and
method for studying the divergence of trajectories, are p
sented in Sec. II. Results for electron and ionK entropy and
the dynamical memory time are given in Sec. III. Two valu
of K entropy for ions were found. The relation between theK
entropy and the rate of entropy growth,S, is discussed in
Sec. IV. A universal formula is obtained which relates theK
entropy to the dynamical memory time and the total ene
fluctuation. Section V is devoted to distinguishing betwe
dynamic and stochastic correlations for both electrons
ions in strongly coupled plasmas~SCP’s!. The origin of the
noise is related to the quantum uncertainty resulting from
weak degeneracy of electrons.

II. SIMULATION

A. Plasma model

We consider a two-component fully ionized system of 2N
single charged particles with massesm ~electrons! and M
~ions!. The molecular dynamics method~MDM !
@2,7,8,13,26–30# was applied. Classical equations of motio
are solved numerically with periodic boundary condition
©2001 The American Physical Society05-1
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We use a ‘‘leapfrog’’ scheme of a second order approxim
tion which, being rather simple, ensures the conservatio
the average total energy@30#.

It is assumed that particles of the same charge interac
a Coulomb potential, whereas the interaction between
ticles with different charges was described by an effect
pair potential~‘‘pseudopotential’’! @31–37#. Most calcula-
tions in the present paper were performed with the electr
ion potential@32,38#

Fei~r !5H 2e2/r , r .a

2e2/a, r ,a,
~1!

where a is a cutoff length. This approximation is used
order to avoid the formation of bound states in the system
the present simulations this parameter was taken to ba
5e2/«kBT, whereT is the equilibrium temperature,kB is the
Boltzmann constant, and«53. This corresponds to the as
sumption that all bound states belowkBT are excluded from
the calculation of the Slater sum@32#. Moreover, the propor-
tionality a;T21 yields uniformity of the interaction poten
tial, and provides a similarity; i.e., any reduced value d
pends only on the nonideality parameterg5e2n21/3/kT,
wheren5ne1ni is the total density of charged particles.

At the first step of the simulation the system was brou
to equilibrium for electrons and ions of equal masses, si
the equilibrium distribution of the coordinates of particl
does not depend on their masses. To obtain the required
perature of the plasma, equations of motion were solved w
additional Langevin forces and friction forces proportional
velocity. In further calculations of the dynamical propertie
these additional forces were dropped, and the mass ratio
restored to the correct value. At this stage we also exclu
the total momentum of the particles. So that a state of
fully equilibrium isothermal plasma was achieved.

B. Calculation procedure

In order to obtain the average Lyapunov exponent, a lo
molecular dynamics~MD! trajectory was first computed fo
given plasma parameters. Then a numberI of statistically
independent sample phase points was chosen from this p
trajectory, and the electrons were slightly randomly d
placed at these points. The system trajectories were c
puted using these changed electron coordinates and
former values of the electron velocities and ion phase v
ables as the initial conditions. After an averaging oveI
5502300 initial configurations, the squared divergences
coordinates and velocities are calculated as

^Dv2~ t !&5
1

NI (
j ,k

N,I

@v jk~ t !2v jk8 ~ t !#2, ~2!

^Dr 2~ t !&5
1

NI (
j ,k

N,I

@r jk~ t !2r jk8 ~ t !#2, ~3!

wherev jk8 (t) andv jk(t) @r jk8 (t) andr jk(t)# are velocities~co-
ordinates! of particles for new and former trajectories, r
spectively; j 51, . . . ,N for electrons and ions, andk
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51, . . . ,I is the averaging index. It should be noted that re
coordinates are used here rather than their images in the
sic MD cell. Computations~2! and~3! were performed sepa
rately for electrons and ions.

Then Lyapunov exponentK can be obtained from

^Dv2~ t !&5A exp~Kt !, ^Dr 2~ t !&5B exp~Kt !

at

t l,t,tm . ~4!

Here t l is a small time, after which the trajectory’s dive
gence starts to follow an exponential law. On the other ha
the exponential increase of^Dv2(t)& is limited by the finite
value of the thermal velocity of particles. Thus, after a tim
tm ,

t.tm'K21ln~6kT/Am!, ~5!

a ‘‘saturation’’ occurs@6–8#, i.e.,

^Dv2~ t !&52^v2&56kT/m, ~6!

^Dr 2~ t !&56D~ t2tm!1^Dr 2~ tm!&, ~7!

where 3kT/m is the thermal velocity squared, andD is the
~self-! diffusion coefficient.

III. RESULTS

A. K entropy for electrons

Examples of^Dv2(t)& and ^Dr 2(t)& for electrons and
ions is presented in Fig. 1. The values ofDv and Dr are
measured in (kT/m)1/2 and e2/(kT), respectively. The val-
ues ofK turn out to be the same for both velocity and coo
dinate deviations. It is also seen that theK values for elec-
trons and ions are close to each other at the initial stag
divergence. This might be related to the fact that a SCP
system in which the fraction of collective degrees of freed
is comparable to unity@39#, or to a general property of sys

FIG. 1. Squared divergencesDv2: ~1! electrons,~3! ions;Dr 2:
~2! electrons,~4! ions. g51.5, M /m510, and N5100. Dr is
given in Landau length units in Figs. 1–4.
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STOCHASTIC PROPERTIES OF STRONGLY COUPLED PLASMAS PHYSICAL REVIEW E63 036405
tems of particles with different masses. Note that the valu
K does not depend on the initial displacement~also see Ref.
@15#!.

B. Dependence ofK entropy on the number of particles and
the form of the electron-ion potential

The dependence ofKt, wheret52p/Ve is the period of
plasma oscillations, on the particle numberN, is weak~Table
I!, which is in agreement with the results for systems
neutral particles@6,8,13#. The average errors in Table I a
well as Table II are about 2%, and correspond to the inte
of scattering for the electron and ion results for^Dv2(t)& and
^Dr 2(t)& @17#.

The above results were obtained for the effective pair
tential @Eq. ~1!#. In order to show the relative contribution
of the Coulomb long range interaction and the non-Coulo
short range part of the interaction toK entropy, the compu-
tations were performed for the following electron-ion pote
tial ~insertion in Fig. 2!:

Fei~r !50.1kT~e2/«kTr!122e2/r . ~8!

Since potentials~1! and ~8! satisfy the similarity relations
the valueKt depends only on the nonideality parameterg
for a given potential. The results are presented in Fig. 2
Table II. It is seen that the form of the short range interact
does not significantly affect theK entropy in accordance with
the general concepts of the role of short range interactio
SCP’s@39#. The Kt values for Eqs.~1! and ~8! differ by a
factor 1.5. Neither of the electron-ion effective pair pote
tials @31,33–37# has a repulsive core, as in Eq.~8!, which
manifests the maximum discrepancy from Eq.~1!. The high-
temperature Deutsch potential@34,35# is more shallow than
Eq. ~1!, and Rostock potentials@31,36# might have deepe
minima than Eq.~1!. Test calculations@40# showed that the
difference ofK for these is within the factor 1.8 from Eq.~1!
for temperatures from 104 to 105 K. The case of pure Cou
lomb electron-ion interaction was treated in Ref.@12#.

C. Results for ions. Mass dependence

The fact thatK depends only slightly on the number o
particles allows one to extend the calculations to greater r
values M /m, taking N510. The preliminary results wer
published in Ref.@16#. The results~Fig. 3! show that theK

TABLE I. Dependence ofKt on the number of particles.

N 10 14 20 40 100 200

Kt 11.1 12.5 11.7 11.8 12.1 12.4

TABLE II. Dependence ofKt on g and the form of the poten
tial.

g 0.5 1.0 1.5

Potential Eq.~1! 18 11.9 9.8
Potential Eq.~8! 27 16.5 14.5
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entropy for electrons and ions does not depend onM /m at
the initial stage of divergence within the accuracy of t
present calculations. In the following this value will be d
noted asKe .

At t5tm the quantity^Dv2(t)& for electrons reaches it
saturation value; therefore, att.tm , only ion trajectories
continue to diverge, as seen from Fig. 4. Computations
M /m5102105 ~Figs. 4 and 5! show that there is an expo
nential divergence for ions with another value ofK entropy
depending onM /m, which will be denoted asKi . TheM /m
dependence ofKe andKi is presented in Fig. 5. Whereas th
first remains constant and equal to theKe entropy for the
electrons, the second satisfy the inverse square root lawKi
;(M /m)21/2

D. Dynamical memory time

Another method to obtain the Lyapunov exponent co
sists of calculating two trajectories with different integratio
time stepsDt0 andDt with identical initial configurations. In
this case the trajectories differ at the first stage becaus
numerical errors. Further divergence reproduces expone
growth @Eq. ~4!# with the same value ofK, just as it should.

FIG. 2. Potential Eq.~1!: ~1! electrons,~2! ions; Eq. ~8!: ~3!
electrons,~4! ions.g51.5, M /m510, andN5100.

FIG. 3. DivergenceDr 2 of ions at the first time scale for differ
ent values of the mass ratio.g51 andN510.
5-3
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The values of̂ Dv2(t)&, normalized to the correspondin
thermal velocities for electrons and ions, are shown in Fig
The point where the exponential trend reaches the satura
level corresponds to the timetme. In Fig. 6 the value oftme
is estimated as the moment of crossing of two straight lin
At this time the system completely ‘‘forgets’’ its initial state
and thereforetme may be interpreted as a dynamical memo
time. The results fortme, depending on the time step rat
for the original and new trajectories, are presented in Fig
as crosses. Here the integration step for the original tra
tory was fixed to be equal toDt050.003 @in units
e2m1/2/(kT)3/254.3310215 s] when the stepDt for the new
trajectory was varied.

The dynamical memory time can also be calculated in
following way. On the original trajectory the velocities of th
particles are reversed at time pointst1 ,t2 , . . . ~see the insert
in Fig. 7!. The reversed trajectory returns to the initial po

FIG. 4. DivergenceDv2 of ions at t.tm for different mass
ratios.g51 andN510.

FIG. 5. Average Lyapunov exponent for ions at two time sca
squares, initial stage; circles, after saturation of electrons. In o
to guide the eye, the power fits are drawn through data pointg
51 andN510.
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with small deviations (Dr 1 ,Dv1) and (Dr 2 ,Dv2) because of
numerical errors and the Lyapunov instability. This allows
to calculate the functionŝDr 2(2t)& and^Dv2(2t)& and ob-
tain the dynamical memory time using a procedure ana
gous to that in Fig. 6. This value is shown in Fig. 7 as
triangle. One can see that it lies close to the extrapola
value of tme in the limit Dt→0.

Figure 7 shows that the dynamical memory time for ele
trons depends only slightly on the step ratioDt/Dt0. Our
calculations have also shown that it is true for differentDt0.
This fact can be used to plot the dependence oftme on the
time step for the original trajectory with any fixed value
Dt/Dt0. The computation of the velocity divergence for ion
after the saturation of electrons gives the value of the
namical memory timetmi . The results for bothtme and tmi
are presented in Fig. 8. The ratiotme/tmi is a fixed value, and

:
er

FIG. 6. The squared divergence of velocities of electrons~rhom-
bus! and ions~circles!. The lines present exponential fits corr
sponding to Eq.~4!. g51, M /m5100, andN5100.

FIG. 7. The dynamical memory time for electrons depending
the trajectories time step ratio~crosses with linear fit!. The triangle
corresponds to the result for trajectory reversing.g51, M /m
510, andN5100.
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does not depend onDt0, this so there is only one set o
points in Fig. 8.

The dependence oftmi on the electron-ion mass ratio
shown in Fig. 9. In accordance with the dependence ofKi
~Fig. 5!, it also fits the square root law.

IV. DISCUSSION

In the present paper we have calculated theK entropy and
the dynamical memory timetm for electrons and ions in
SCP’s. Let us now discuss how these quantities characte
stochastic properties of the system. As a preliminary iss
we start with the simplest one-component case.

A. One-component system

Physically, the value ofK may be regarded as the rate
the entropy growth due to dynamic trajectory mixin

FIG. 8. The dependence of the dynamical memory time on
integration time step for electrons (tme) and ions (tmi). Dt/Dt0

50.5, g51, M /m510, andN5100. The triangles are the resul
of our simulations, straight line is a logarithmic fit~its slope corre-
sponds ton52).

FIG. 9. The dynamical memory time for ions with differe
masses. The grid allows one to findtmi values for definite species o
ions.g51 andN510.
03640
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Zaslavsky@1# considered the quantityK21 as the correlation
uncoupling time~see Refs.@5,18#!. In order to compare thes
definitions with the MDM, we briefly recall arguments fo
this interpretation@1,5,18#.

The entropySof a subsystem in equilibrium is defined b
the expression@41#

S5k ln DG, ~9!

whereDG is the dimensionless statistical weight for the su
system. Consider the motion of the phase points located
tially in a compact regionDG0 in phase space. According t
Liouville’s theorem, the phase volume remains constant:

DG~ t !5DG0 . ~10!

Note, however, that the structure of the phase region chan
drastically. Trajectories which started from initially clos
points insideDG0 diverge exponentially with time, and th
structure of the region becomes more and more stretched
deformed; it is cut up, with fiords and may be fractal@5#. As
a result, the effective size of the region,DG(t), increases
with time. From Eq.~4! it follows that

DG~ t !5DG0eht, ~11!

when we use a formula likeDG(t);r 3v3, andh is propor-
tional to theK entropy. One can conclude from Eqs.~9! and
~11! that h;K is really a rate of entropyS growth resulting
from dynamic trajectory mixing@1,5,18#.

Our calculations show that the value oftm may be treated
as a time interval which is necessary for the volumeDG(t)
to reach its maximum valueDGmax. One should conside
DGmax as its value at the end of the exponential grow
During each subsequenttm interval the procedure of filling
the volumeDGmax repeats again and again without changi
its value. The value ofDGmax determines the entropy of th
state which is described by the MDM equilibrium phase t
jectory.

From the above, it is clear thattm has also the meaning o
the correlation uncoupling time. Contrary to the suggest
of Zaslavsky@1#, the values oftm andK21 can differ remark-
ably. Besides the quantitative difference, there is a princ
difference betweentm andK21. While K is a characteristic
of the many-particle system under consideration and d
not depend on a numerical scheme, the value oftm depends
on the accuracy of integration, which realizes the coa
graining procedure in this case. This fact was not taken i
account in Ref.@1#.

The coarse graining parametere was introduced in Ref.
@1# and was proposed to tende→0 at the end of derivation
However it was assumed that the correlation uncoupling t
does not depend one, and remains finite whene→0. The
quantitye is given by the numerical integration accuracy
the MDM. It is evident thattm→` whene→0.

B. Two-component plasma

The previous arguments remain valid in this case too,
now it is necessary to consider four quantities. The value

e

5-5
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Ke and Ki are characteristics of the system, and do not
pend on the numerical integration accuracy.Ke presents the
rate of entropy growth due to the electron and ion traject
divergence at the initial stage, andKi defines the rate of the
slower entropy growth at the stage when the electron tra
tory divergence is finished but the ion trajectory divergen
continues. We emphasize, once more that at the initial s
both the electron trajectory and ion trajectory divergen
proceed with the same rateKe .

The timestme and tmi are characteristics of the numeric
scheme. These values correspond to uncoupling of elec
correlation and uncoupling of ion correlation. They give t
time intervals required for phase volumesDGe andDG i ~and
entropy! to reach their maximum values.

C. Universal relations

The multiplierA;(Dt)n in Eq. ~4!, wheren is an order of
approximation of the numerical integration scheme (n52
for our case!. Then from formula~5! one obtains

6kT/m5A exp~Ktm!, ~12!

K~ tm12tm2!5n ln~Dt2 /Dt1!, ~13!

wheretm1 and tm2 are the dynamical memory times for th
stepsDt1 and Dt2, respectively. Expression~13! does not
depend on the temperature, the number density, or the
tem studied.K does not depend on the time step, and
allows us to illustratetm(Dt0) @Eq. ~13!# in the form of Fig.
8. The slope of straight line in Fig. 8 corresponds to
logarithmic fit with n52, in accordance with the numerica
scheme used.

The total energyE is equal to the sum of potential an
kinetic energies. The constancy of the energyE is fulfilled in
MD simulations only on average. Instant values ofE fluctu-
ate around an average value. So the MD trajectory does
lie on the hypersurfaceE5const, as for Newton or Hamilton
equations. It is located in a certain hyperlayer of thickn
DE.0 which envelopes the hypersurfaceE5const@8#. The
value ofDE is determined by the accuracy of the scheme
numerical integration@6–8,30,42–44#. Since^DE2&;Dtn, it
follows from Eq.~13! that

K~ tm12tm2!5 ln~^DE2
2&/^DE1

2&!. ~14!

The form of this equation does not depend on the num
cal scheme. The results for a plasma and the Lennard-J
system@45# are presented in Fig. 10. Formula~14! relates the
K entropy and the dynamical memory time to the noise le
in a dynamical system and is consistent with general c
cepts @19,21,22#. It would appear reasonable that Eq.~14!
would be a universal relation, i.e., be applicable not only
the MD systems which are used in computer simulations
to any real dynamical systems affected by noise as well.

D. General requirements to a numerical scheme

From the above discussion it follows that the time step
numerical integration must satisfy the inequalities
03640
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t r,tm,tR /M , ~15!

wheret r is a relaxation time for the process under study,tR
is the run duration, andM 21/2 is an accuracy needed. Th
left inequality in Eq.~15! is evident. The right inequality
reflects the fact that the points on the phase MD traject
separated by the time intervaltm must be statistically inde-
pendent. Therefore, the real accuracy of averaging is
pected to be even better thanM 21/2.

Condition ~15! can be naturally generalized to two
component equilibrium plasmas. In this case the values otR
and the integration accuracy must satisfy

t ri ,tmi,tR /M , ~16!

wheret ri is the ion relaxation time. It is expected that th
averaging accuracy for electron characteristics is better t
M 21/2.

When only electron characteristics are studied, it is su
cient to take

t re;tR . ~17!

In this case each characteristic must be averaged over
initial ion configurations. The number of these configuratio
M determines the accuracyM 21/2. Sampling procedures fo
the initial ion configuration differ in equilibrium and non
equilibrium cases. The definition of ensemble of initial co
figurations for the nonequilibrium case is a separate prob
@46–48#.

V. ORIGIN AND IMPORTANCE OF THE DYNAMICAL
MEMORY TIME

Compare the values of the dynamical memory time o
tained with the time scales of electron-ion correlation, t
study of which was started for equilibrium SCP’s in Re

FIG. 10. The universal dependence ofKtm on the total energy
fluctuations. Triangles, SCP (Dt/Dt050.5, g51, M /m510, and
N5100). Circles, Lennard-Jones system. Straight line, Eq.~14!.
5-6
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@26,37,38,49#. The examples of our results for the dynamic
structure factor~DSF! and velocity autocorrelation function
(VAF) are presented in Figs. 11 and 12.

A. Electron correlation

The frequencies in the region of the electron DSF ma
mum and to the right correspond to timest,tme. The same
is valid for VAF in the time interval whenVAF is greater than
0.1. Therefore, these correlations are of a dynamical~New-
tonian! nature. The electron correlations for theVAF tail, in
the region of the DSF minimum, and to the left, correspo
to the time interval when the dynamical memory of initi
conditions is lost, i.e., the correlations have not a dyna
but a stochastic nature.

It would be of interest to investigate whether the increa
of the dynamical memory time with improving numeric
integration accuracy would influence correlation characte
a range intermediate between dynamical and stochastic
relations. From a computational point of view this problem

FIG. 11. The dynamical structure factors for wave numb
equal to~a! kae50.958 and~b! kae50.857. The first maximum
corresponds to ion-sound waves, and the second to Lang
waves.g51, M /m510, andN5100.
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not a simple one. It is seen from Eqs.~13! and~14! and Figs.
8 and 10 that the value oftme increases only logarithmically
with an improvement of the accuracy. The computatio
facilities available allow one to decreaseDE by five orders
of magnitude even when refined numerical schemes are
@42–44#. It would increasetme only twice. Therefore the
range of stochastic correlations would still be retained.

At the same time the excessive increase oftme is of no
importance for physics. Recall that there are natural fac
which result in finite the dynamical memory time in re
systems@9,10,21,22#. These include a broadening of the pa
ticle wave packets, and diffraction effects at scatteri
These factors were taken into account in Refs.@10,50# to
introduce a concept of quasiclassical trajectories, and to
tain the corresponding equations of motion; i.e., when pa
ing to the classical limit the leading terms in the Plank co
stant power expansion are retained. The equations obta
differ from Newtonian ones by additional random force
Gertsenshtein and Kravtsov@24# paid attention to the role o
weak inelastic processes. They considered perturbation
trajectories under the influence of a thermal electromagn

s

uir
FIG. 12. Normalized velocity autocorrelation functions for~a!

electrons and~b! ions.g51, M /m510, andN5100.
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field @19# and spontaneous radiation of low-frequency ph
tons @23#. The fitting of the numerical integration errors
the value of the quantum noise will be studied elsewhere

However, even now one can say that for the plasma
vestigated the quantum effects mentioned above are not
ligible; in addition, the degeneration the degeneration par
eter is not too small@26#. Taking into account thattme
depends on the noise level only logarithmically, it is believ
that quantum uncertainty would lead to values oftme which
are of the same order as those obtained in this paper.
phasize that here we discuss the dynamical memory time
real SCP’s rather than for the computer model.

Thus the electron time correlations for SCP’s can be
both dynamical and stochastic natures, depending on
time interval studied considered. The possible slight diff
ences in the electron-ion effective interaction potentials d
cussed in Sec. III B do not violate this conclusion.

B. Ion correlation

As seen from Figs. 11 and 12~b!, and from the discussion
in Sec. V A, ion correlations correspond to the time wh
electron correlations are stochastic, the stochastization oc
ring many times. This is the case in both computer plasm
and real SCP’s.

As for the time scale for ionVAF and ion sound, the
situation is quite analogous to that for electrons. These
relations are of dynamical character except in the long wa
length region of DSF’s and long tail of ionVAF where the
correlations become stochastic. Despite the fact that the
mass is much greater than the electron mass, the ion
chastization in real plasmas, as for electrons, is related to
quantum uncertainty. The latter is the sum of the ion unc
tainty and the uncertainty induced by the electron-ion int
d

-

c.

m
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action. The total uncertainty level for ions is expected to
much less than for electrons. However, the ion correlat
time scale is much greater than the electron time scale, a
is sufficient for the exponential instability to bring the sma
quantum uncertainty to a stochastic level for the ion D
long wavelength and theVAF tail.

VI. CONCLUSION

In this paper calculations of the dynamic memory tim
were performed for the specific case of MDM numeric
schemes. Hence the values oftme and tmi were determined
by the noise resulting from numerical errors. However,
fact that the dependence of the dynamical memory time u
the noise level is logarithmic, i.e., quite weak, allows one
extend the qualitative conclusions to the real SCP where
nite values of dynamical memory time are determined by
quantum uncertainty. Therefore, the correlations for SCP
become stochastic for long wavelength regions of both La
muir and ion-sound plasma, waves and for long electron
ion VAF tails. The specific values of the times of transitio
from dynamical to stochastic correlations depending
quantum effects will be considered elsewhere.

Note added in proof.The stochastic properties of one
component plasma were analyzed using the close appr
described in Refs.@51–53#.
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