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Abstract
A new interatomic potential for a uranium–molybdenum system with xenon
is developed in the framework of an embedded atom model using a force-
matching technique and a dataset of ab initio atomic forces. The verification of
the potential proves that it is suitable for the investigation of various compounds
existing in the system as well as for simulation of pure elements: U, Mo
and Xe. Computed lattice constants, thermal expansion coefficients, elastic
properties and melting temperatures of U, Mo and Xe are consistent with the
experimentally measured values. The energies of the point defect formation in
pure U and Mo are proved to be comparable to the density-functional theory
calculations. We compare this new U–Mo–Xe potential with the previously
developed U and Mo–Xe potentials. A comparative study between the different
potential functions is provided. The key purpose of the new model is to study
the atomistic processes of defect evolution taking place in the U–Mo nuclear
fuel. Here we use the potential to simulate bcc alloys containing 10 wt% of
intermetallic Mo and U2Mo.

(Some figures may appear in colour only in the online journal)

1. Introduction

Over the last several decades the problem of the development of new uraniferous fuel materials
has become extremely important because of the enhancement of technologies related to the
nuclear cycle implementation. One of the promising methods of further evolution of the nuclear
sector proposes using fast-neutron nuclear power reactors. The progress in reactor technology
encourages a search for fuel materials that can ensure a high level of efficiency along with a
operational safety.
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Uranium alloys are under active investigation as possible fuels for future fast and research
reactors [1–4]. Understanding the radiation damage effects on the fuel stability is one of the
major challenges to be solved on the way to effective and safe fuel design. A description
of radiation damage requires knowledge of the atomistic mechanisms of defect generation
in solids [5–10]. In the case of uranium the radiation defect properties have still not been
sufficiently studied either for pure U or for metallic uranium compounds, including U–Mo.

It has been experimentally proved that due to their good characteristics, uranium–
molybdenum alloys are considered to be a prospective fuel material for fast neutron and
research and test reactors [11]. Alloying pure high-temperature bcc γ -uranium with 5–20 wt%
molybdenum with the following quenching produces dense γ -U–Mo structure that can be
retained as metastable at T = 300–900 K, and then returns to a stable state with a rise in
temperature (T � 900 K). Nevertheless, in both metastable and stable states the structure
has appropriate mechanical and thermophysical properties [11–16] along with a heightened
uranium density: 8–9 gU cm−3 for dispersion-type fuels and 15–18 gU cm−3 for monolithic
fuel [17–20]. The last fact is important because it compensates for the low content of
enriched uranium in the fuel. Meeting the conditions of high thermal conductivity, low thermal
expansion, and stability under irradiation and corrosion resistance, U–Mo compositions also
have low potential for interacting with cladding materials. All these points show the precedence
of U–Mo over other examined high-dense metal fuels, for example, based on U-Zr [21]—also
considered as an important fuel material for fast-neutron reactors [22]. The results of the
theoretical comparison between the phase stability data for U–Mo and U–Zr provided in [23]
also indicates the preference of γ -U–Mo due to an ability to remain in a bcc structure and
corresponding very weak constituent redistribution in the typical fuel operation temperatures
(compared with U–Zr, which undergoes several phase transitions).

However, the key problem hindering the use of these fuels in industry is insufficient
knowledge about the stability of the γ -U–Mo composition against defect formation, swelling
and possible phase transitions caused by heating, irradiation or the influence of fission products.
Despite a number of reports discussing the experimental and theoretical study of the U–Mo
system, the complete picture explaining the behaviour of U–Mo alloys under operation
conditions is not clear at this time. To complete it one should take into account the possibility
of structural and phase transitions, features of formation and redistribution of fission products,
and the generation of radiation defects: vacancies, self-interstitial atoms (SIA), or even more
complicated defect clusters and dislocations.

The molecular dynamics (MD) method was demonstrated to be useful for the investigation
of mechanical and thermodynamical properties of various materials, processes of phase
transitions, radiation-induced defect formation and evolution, displacement cascades and other
structural changes caused by fission fragments. Therefore, the MD method can be very helpful
for clarifying the phenomena indicated above or predicting some new aspects of U–Mo nuclear
fuel performance. However, to apply MD to a chosen material an appropriate interatomic
potential is required. For example, during the research on conventional uranium dioxide
nuclear fuel (UO2) dozens of interatomic potential models were introduced and then further
improved [24–27]. Meanwhile, a review of the published interatomic potentials for U, Mo and
their compounds leads us to conclude that at this time any research on the interatomic potential
model for the U–Mo system has not been reported, even though this material is found to be
very promising and suitable for advanced nuclear reactor technologies. Consequently, the
goal of this work is to develop and then to verify the interatomic potential especially regarding
the simulation and research of the structure and properties of the U–Mo system in various
cases, including the problems dealing with the presence of gaseous fission fragments (using
xenon as a generic example). In what follows, the explanations of the potential construction
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scheme are given, the resulting potential functions are discussed and the potential verification is
reported.

2. Construction of the potential

The construction of the interatomic potential for the ternary U–Mo-Xe system was performed
within the framework of the embedded-atom method (EAM [28, 29]), allowing us to take into
account many-particle interatomic interactions. This model is shown to be convenient in the
cases of the binary Mo–Xe [30] system and pure uranium [31]. A general expression for the
potential energy is chosen in the standard form:

Ui =
∑
i<j

ϕαβ(rij ) + Fα(ρi), ρi =
∑
j �=i

ρα(rij ), α, β = U, Mo, Xe. (1)

Here, the first term ϕαβ is the pair potential depending on the distance rij between the two
given atoms i and j (α and β are the element types). The second term Fα takes into account
the many-body interatomic interactions. Fα depends on the effective electronic density ρi at
the position where the ith atom is placed. For the ith atom, ρi is the sum over all contributions
ρα(rij ) created by other j th atoms situated within the cut-off radius rcut from the ith atom.

To design the EAM potential for a classical MD simulation of the system studied we use
the force-matching method originally proposed by Ercolessi and Adams [32]. This technique
provides the opportunity to construct reliable interatomic potentials even for complicated
multicomponent systems by making use of the results of ab initio calculations. The idea is
to adjust the set of the potential functions ϕαβ(r), ρα(r) and Fα(ρ) to accurately reproduce
per atom forces (together with energies and stresses) computed for some reference structures
(so-called configurations) representing various phases existing in the system.

2.1. Preparing the reference configurations

In order to start the potential construction process it is necessary to prepare the reference
configuration database to provide the basis for a new potential. In our case, to build a tool
suitable for the simulation of a complicated ternary system (and each of its components
separately) in a wide pressure and temperature range we have to prepare an extensive set
of reference configurations representing all kinds of interesting structures. Each configuration
is a small structure model corresponding to one of the possible states of the U–Mo–Xe system.
It can represent a pure element (U, Mo, Xe) or a binary (U–Mo, Mo–Xe, U–Xe) and ternary
(U–Mo–Xe) system at various given densities and temperatures. Temperature is regarded in
this case as the parameter that provides the magnitude of the atomic displacements from the
equilibrium states.

The model structure size here is strongly limited due to the high computational cost of the
first-principles calculations. This means that the simulation box has a size less than or equal
to 16 Å in each dimension and contains up to 250 atoms. The periodic boundary conditions
(PBC) are applied in all three dimensions. For each of the reference structures we perform
a short (∼1 ps) MD run at the given temperature T with some trial potential based on the
EAM potentials [30, 31]. In general, the initial trial potential can be set rather arbitrarily but
organization of the fitting procedure can lead to its improvement after every computational
iteration. In this way we introduce the thermal displacements of atoms with the magnitudes
reflecting the given temperature (which is necessary because for an ideal lattice with PBC the
forces acting on the atoms equal zero). The final atomic arrangement after the MD calculation
for a given initial structure is one of the required configurations. All classical MD computations
reported in this work are performed using the LAMMPS code [33].
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Table 1. Description of the configurations involved in the reference database.

� Pmin–Pmax Vmin–Vmax Tmin–Tmax

Structure n (%) (GPa) (Å3/at) (K)

Mo, bcc 27 21.6 −10–459 8.8–32 200–2900
Mo, liquid 4 19.2 3–52 14.5–17.08 2400–5200
α-U, orth 17 34.3 −3–98 15.1–24.8 450–2000
γ -U, bcc 9 31.8 −1–97 15.4–21 1000–3000
U, liquid 11 57.8 −1–102 15.5–33.2 2100–5900
γ -U–Mo, bcc 14 37.2 −5–62 15.5–21 300–1200
U–Mo–Xe, bcc 8 41.9 0–52 16.38–22 300–450
Mo–Xe, disordered 15 23.5 −2–396 11.2–66.8 200–2900
Mo–Xe, bcc 5 18.2 6–15 15 200–2900
Mo–Xe, fcc 1 29.4 50 24 50
Xe, fcc 4 39.5 1–82 14–52 50–130
Xe, disordered 6 51.3 0–8 41–182 800–1100

Defect structures
SIA in solid Mo 8 — 1–5 15.5 300

Normalizing structures
U, 4 at 1 — 0 539 —
Mo, 4 at 1 — 0 549.25 —
Xe, 4 at 1 — 0 503.67–732.3 —

Note: n is the number of configurations of the given type. The minimum and maximum values
of T , V , P chosen for each of the configuration types are given along with the average relative
rms deviations (�, in %) between ab initio reference and EAM calculated forces, taken over all
configurations of the given type.

The presence of U, Xe, Mo–Xe and Mo configurations prepared and tested during the
work on the corresponding EAM potentials [30, 31] gives us the opportunity to use this set
again without repeating the expensive ab initio computations. To expand the database and
make it appropriate for the generation of a new combined U–Mo–Xe potential we additionally
build configurations representing U with substitutional Xe atoms, binary bcc U–Mo alloys,
and bcc U–Mo alloys with additional substitutional or interstitial Xe atoms.

It should be noted that along with the configurations prepared to visualize some given
structure at the given T , we additionally take into account so-called normalizing configurations.
They are constructed manually for each pure element and represent the system containing
several atoms placed in a cubic simulation box (∼13 Å in size) in such a manner that the
interatomic distances between them are larger than the given potential cut-off. The energy,
stress and force values for every normalizing configuration are set to zero. This addition
appears to be very useful because it helps us to meet the requirement of an embedded energy
value of zero for every pure element (Xe, U or Mo) at zero electron density.

The whole set of reference structures contains 132 configurations with various
concentrations of U, Mo and Xe and at different given densities and temperatures T , together
with normalizing data. Some explanations and general comments for the exact reference data
set are given in table 1. For binary U–Mo models, the Mo concentration was chosen to be
between 6 and 12 wt% to obtain a better reproduction of general nuclear fuel compositions. In
two of the ‘U–Mo–Xe’ configurations ∼12% of all atoms of the initial bcc γ -U–Mo structure
are substituted with Xe, while the other 6 ‘U–Mo–Xe’ are bcc γ -U–Mo models with a single
substitutional Xe atom together with a single uranium interstitial. An example of the latter is
shown in figure 1(b) illustrating an idea of how the configurations involved appear. Figure 1
also contains an example of the pure Mo defect configuration (see figure 1(c)). A set of the
structures expressing eight various point defect configurations was added to the database and
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Figure 1. Examples of the configurations included in the reference data set. (a) γ -U–Mo bcc
alloy (128 atoms, 8 at% of Mo, T ∼ 450 K, P = 16 GPa); (b) U–Mo–Xe bcc configuration
containing one substitutional Xe atom together with a single U interstitial (128 atoms, 12 at% of
Mo, T ∼ 1200 K, P = 26 GPa); (c) Mo bcc configuration with dumbbell 〈1 1 1〉 (D111) SIA (251
atoms, 300 K, 0 GPa). Positions of the structure defects existing in the last two configurations are
denoted by the dotted circles.

took part in the following potential optimization. One can see that the fitting errors for the
defect Mo structures are not denoted in table 1. This is caused by the non-conventional method
of fitting applied to this part of the reference data. The explanation of this situation is given in
the next subsection.

After the reference structure set was completed, the interatomic forces, energies and
stresses for each configuration were calculated using the VASP [34] package (version 4.6).
The projector augmented-wave (PAW) pseudopotentials together with the plane-wave basis
cut-off energy of 400 eV are used. The Brillouin zone is sampled with a 3 × 1 × 2 k-point
mesh for orthorhombic α-U and a 2 × 2 × 2 mesh for all bcc structures and liquid. The
generalized gradient approximation of Perdew and Wang is used for the exchange-correlation
functional.

2.2. Optimization of the potential functions

The optimization of the U–Mo–Xe EAM potential within the framework of the force-matching
method based on the preliminary computed ab initio data was presented via the potfit program
code [35]. The trial functions ϕαβ , ρα and Fα necessary for start of the computation procedure
were composed from the previously reported and mentioned EAM potentials for pure U and
binary Mo–Xe. One should also note that the functions defined previously for Mo–Mo, U–U,
Mo–Xe and Xe–Xe interactions in [30, 31] were not fixed here during the potfit operations
and could be changed to get a better representation of the ternary system. To sum up, the
optimization procedure deals with 12 functions: 3 functions for ρα , 3 for Fα and 6 for pair
potentials existing in the system. ρα and ϕαβ were determined at the distances between the
given rmin and rmax. The first value was set to be equal to the least interatomic distance
available in the configuration set (1.5 Å) and rmax was set to be equal to a chosen potential cut-
off distance (6.2 Å). The potential functions are represented by tabulated values (spline knots)
and cubic spline interpolation. The spline knots are adjusted in an iterative way during the
optimization procedure for minimizing the deviations between the reference database forces,
energies and stresses, and the respective values calculated with the EAM potential. The fitting
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errors between all the data involved are determined using a least-squares target function:

Z = ZF + ZC. (2)

The first part (ZF) is related to the difference between the EAM and ab initio forces calculated
for Na atoms listed in the reference database:

ZF =
Na∑
i=1

∑
α=x,y,z

Wi

(F EAM
iα − F DFT

iα )2

(F DFT
iα )2 + εi

, (3)

and the second one gives the fitting errors for energy and stress values:

ZC =
Nc∑
i=1

Wi

(AEAM
i − ADFT

i )2

(ADFT
i )2 + εi

. (4)

Here Fiα are three force components acting on the given atom i, and Wi are the weights of
different terms. Ai can be equal to the energy of the given configuration or to one of its six
stress tensor components. Nc is the number of all reference energy and stress values. εi are
the small values helping us to avoid extremely small denominators (and consecutive large
meaningless contributions) when the reference value ADFT

i is too small (although is known
with a limited accuracy). The index ‘DFT’ denotes reference values; ‘EAM’—computed with
the fitted potential.

A specific case related to the features of the fitting process deals with the configurations
containing given defects, i.e. eight molybdenum reference structures representing possible
point-defect (vacancy and SIA) configurations. One of them (with an SIA dumbbell 〈1 1 1〉
defect) is depicted in figure 1(c). During the work on the EAM interatomic potential for
the Mo–Xe system it was found out that accounting for high-pressure configurations with
small interatomic distances does not lead automatically to an adequate representation of the
defect properties. To obtain the potential aimed at the accurate simulation of the given defect
structures it is necessary to include the examples of these structural defects in the reference
database and achieve very high accuracy while fitting the corresponding energies because the
differences between them are very small. If the potfit code is applied, this requirement can
be met by assigning the substantially increased weights to the chosen defect structures, which
means that the quality of the fitting in these cases will also improve. The separate weight
values Wi attributed to every configuration taking part in the potential optimization procedure
can be used to manage the process, for example, to achieve a better fit of some given phase
(i.e. of its forces, energies and stresses). The default values for Wi equal 1, but for Mo defect
configurations they were increased to 300–800. The forces per atom also presented for the
delicate defect structures in the reference database should be excluded from the fitting procedure
to avoid distorting the entire fitting by the outstanding weight values. The last problem can
be solved again by means of the potfit code, which provides the opportunity to exclude the
given indicated forces from the optimization processes. A number of optimization iterations
were executed until we obtained the potential reproducing the initial ab initio data with the
best possible accuracy. The precision of the force fitting can be appraised by calculating the
relative root mean square deviations (RMSD):

� = 1

N

N∑
i=1

√
(F EAM

i − F DFT
i )2

(F DFT
i )2

; (5)

here N is the number of atoms in some given configuration, FEAM is the force calculated
with the EAM potential and FDFT is the reference ab initio DFT force. The deviations � are
computed for each atom in each configuration and then averaged within the given configuration
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Figure 2. EAM potential functions derived via the potfit program code. Functions ϕαβ(r)

describing pair interactions between U, Mo and Xe are grouped together and plotted in figures
(a) and (b); figure (c) shows the behaviour of electron densities ρ(r); embedded functions F(ρ)

are shown in figure (d).

type for more compaction (see table 1). It should be mentioned here that the 20%–30% errors
are typical values for the optimization techniques deployed [36]. The twelve functions defining
the finally matched potential are grouped together and plotted in figures 2(a)–(d).

The potential functions have a number of peculiarities. For example, there is a local
minimum of the U–Xe pair potential at r = 3.2 Å. Accordingly, one can suggest the presence
of bonding between uranium and xenon. This last fact qualitatively agrees with the results of
the experimental observations reported in [37]. From figure 2(c) one also might note that the
resulting xenon electron density function appears to have negative values at distances from 4
to 6 Å. Such an occurrence arises from the organization of the potfit code, which permits the
electron density functions to take negative values if it leads to a better EAM potential fitting (it
was also observed for niobium [36]). An important point to be made here is that in the pressure–
temperature area significant for solving practical problems dealing with xenon (T > 250 K and
0 < P < 100 GPa) thermal fluctuations guarantee positive values for ρ, preventing possible
conflicts. At the same time, the relatively small rcut chosen in this case leads to the fact that the
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Figure 3. Relative root mean square deviations (RMSD) of fitted forces from the
reference values for Xe, Mo–Xe and U–Mo–Xe configurations. δRMSD is equal to
[RMSD(EAM1) − RMSD(EAM2)]/RMSD(EAM1). Here EAM1 is the original EAM U–Mo–Xe
potential (plotted in figure 2), EAM2 is the EAM U–Mo–Xe with ρXe(rij ) substituted from EAM
Mo–Xe [30].

potential gives an insufficient description when applied to room-temperature xenon at normal
density. But with an increase in the temperature (or density) of simulated xenon the quality
of potential performance appears to be much better (see the verification subsection for the test
results).

Trying to overcome the existence of negative ρXe(rij ), we perform additional optimizations
in such a manner that all the functions dealing with U and Mo (plotted in figure 2) were kept
fixed, and the Xe functions were varied. But these additional runs again result in a negative
ρXe(rij ). Additionally, we try to replace ρXe(rij ) in developing EAM U–Mo–Xe with the
function from the EAM Mo–Xe model [30] (which has a smaller negative region). However,
this substitution makes worse the precision of the force fitting in cases dealing with pure Xe and
Mo–Xe configurations (a comparison between the errors is provided in figure 3). The last result
is understandable because the modification of the fully optimized potential set by including
the function designed for the somewhat different system is not strongly valid; moreover, the
function included has a smaller cut-off than the original one (5.6 Å versus 6.2 Å). To conclude,
it should be said that while the efforts undertaken to eliminate the negative xenon electron
density in developing the EAM U–Mo–Xe potential were not successful, it was decided to
keep the obtained form of the function ρXe(rij ) with negative values in a range of interatomic
distances. In particular, after the testing showed that the current version of the potential
functions generally does not hinder the adequate reproduction of the xenon properties. The
details of the simulation with the potential plotted in figure 2 are analysed below in the xenon
verification subsection.

2.3. Analyses of the resulting potential functions for U–Mo–Xe in comparison with other
potential models for U, Mo and Xe

Throughout all the above sections we often refer to the previously presented potentials
developed for the pure U and binary Mo–Xe system [30, 31]. As was mentioned, the trial
potential applied in this work was essentially based on these potentials. In addition, even
the reference configuration data for the U–Mo–Xe system were in part inherited from those
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computations. Therefore, it is reasonable to test the differences, if any, between the new
EAM U–Mo–Xe potential functions and the previous results. Actually, the most convenient
way of comparing different EAM potentials for the same element is the so-called effective pair
format [38]. It is known that within the stated EAM formalism the energy Ui (see equation (1))
of the monoatomic model is invariant with respect to some transformations in which we modify
the embedded function Fα of some element α by adding (or subtracting) a term linear in the
electron density ρj :

Gα(ρα) = Fα(ρα) + kρα (6)

and, at the same time, adjust the pair potential ϕα as follows:

ψα(rij ) = ϕα(rij ) − 2kρα(rij ), α = U, Mo, Xe, (7)

where k = −dFα/dρα at the given ρα = ρ0
α , i.e. equilibrium electron density on atom

corresponding to the chosen structure of the element α. The latter means that if we want to
compare different EAM potentials using effective pair format it is necessary to choose values
of ρ0

α related to the same structure in each of the potential cases. The methodology described
was successfully applied for comparative study between the interatomic potentials for many
elements, for example, Cu and Ag [39], and here we address it while investigating the results
obtained for U, Mo and Xe in this work. It should be noted that recently other interatomic
potentials for uranium were published [40–42].

As can be seen in figure 4, the potential functions representing interactions between
uranium atoms in the initial potential [31] have not been changed significantly while processing
the EAM U functions contained in the EAM U–Mo–Xe potential. In figure 4 the pair potentials
from both of these models are presented (see figure 4(a)) together with the effective pair
potentials derived for othorhombic α-U—figure 4(b) and for bcc γ -U—figure 4(c). The results
of transformations applied to molybdenum EAM potentials are plotted in figure 5. From this
figure the difference between pair potentials implemented in EAM U–Mo–Xe (line 1) and
EAM Mo–Xe (line 2) models is seen, along with the fact that the effective pair format in
general shows the consistence of both these models (see lines 3 and 4). In the case of pure
xenon the difference between the studied pair potential is obvious (see lines labelled as 2 and 4),
but after switching to the effective pair format form the EAM Xe potentials working in EAM
U–Mo–Xe (line 3) and in EAM Mo–Xe (line 5) are found to be in good agreement. Moreover,
comparison of the resulting curves with a widely used exponent-six pair potential for Xe [43]
leads us to conclude that the shape of all these curves is quite close (see figure 6). The latter
agrees well with the fact that the embedded function F of xenon is linear at the small ρ and,
in other words, it means that the resulted Xe–Xe interaction defined by the EAM U–Mo–Xe
potential is actually close to the pair-potential form, which appears to be sufficient to deal with
xenon properties.

To sum up, it can be said that the analysis provided using effective pair format calculations
shows some difference between U, Mo and Xe potential functions working in the different
interatomic potentials. Nevertheless, the general view of all variants appears to be quite
similar. To understand the full picture, these aspects should be analysed together with the
particular potential verification results summarized in the corresponding sections of the work.

3. Application of the potential to simulation of pure elements: U, Mo and Xe

The following sections contain the summary of the U–Mo–Xe potential verification results.4

Some test MD calculations of the structure, elastic constants, melting temperatures,
4 The tabulated potential for U–Mo–Xe in the LAMMPS setfl format can be downloaded from the NIST interatomic
potential repository (www.ctcms.nist.gov/potentials/).
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Figure 4. Uranium EAM potential functions presented in the effective pair format. Index ‘1’
denotes functions related to EAM U [31]; 2—results of this work. Figure (a) shows the U–U pair
potentials implemented in EAM U(1a) and in EAM U–Mo–Xe (2a). The next two figures describe
the differences between the U EAM potential functions modified to the effective pair format for
orthorhombic uranium (b) and bcc uranium (c). Vertical dotted lines indicate the coordinates of
the first (I) and the second (II) peaks of uranium radial-distribution function calculated with EAM
U–Mo–Xe for α-U at 300 K and for γ -U at 900 K.
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Figure 5. Comparison between Mo potential functions implemented in EAM U–Mo–Xe and EAM
Mo–Xe. 1 and 2—Mo–Mo pair potentials (ϕαβ(r)) included in the EAM U–Mo–Xe and the EAM
Mo–Xe [30] potentials respectively. 3 and 4—corresponding EAM Mo potentials in the effective
pair format. Vertical dotted lines indicate the coordinates of the first (I), the second (II) and the
third (III) peaks of bcc molybdenum radial-distribution function calculated with EAM U–Mo–Xe
at 300 K.

Figure 6. Results of the comparative study between various potentials for Xe. 1 and 2—Xe–Xe
pair potentials (ϕαβ(r)) included in EAM U–Mo–Xe and EAM Mo–Xe [30], respectively. 3 and
4—corresponding Xe EAM potentials in the effective pair format calculated for compressed fcc
Xe (at 50 GPa). 5—exp-6 potential for Xe [43], rcut = 14 Å. Vertical dotted line indicates the
coordinate of the first (I) peak of radial-distribution function calculated with EAM U–Mo–Xe for
fcc Xe at 50 K.

room-temperature isotherms and other properties of pure U, Mo and Xe are accomplished,
and the information obtained is compared with the known experimental and theoretical data.
A comparison between the new results and those predicted previously by the U [31] and Mo–Xe
potentials [30] is provided throughout the subsections.
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Table 2. General characteristics of solid uranium phases in comparison with the existing
experimental data and results calculated previously using MD with potential [31].

EAM, this work EAM U [31] Experiment

α-U
a 2.854 2.8361 2.8537, 2.8540
b 5.751 5.7604 5.8695, 5.8700
c 4.944 4.9551 4.9548, 4.9550
y 0.1025 0.1015 0.1025
c11 134.5 151 215
c22 253 218 199
c33 320 330 267
c12 84.5 109 46
c13 103 130 22
c23 82 108 108
B 109 149 104, 135.5, 149

γ -U
a 3.542 3.493 3.53
B 92 95 113.3
Tm 1530 1440 1408

Note: Lattice constants (a,b,c) are given in Å, bulk modulus and elastic constants (B, cij ) of
solid uranium phases are in GPa and melting temperature Tm is in K. The experimental values
correspond to T = 300 K for α-U and ∼900 K for γ -U. MD calculations are performed at the same
temperatures. Lattice constants for α-U are taken from [76] (the first value) and [20] (the second
value); cij are given in [77]; three different values of experimentally measured bulk modulus B of
α-U are cited from [47, 49, 78], respectively. Data for γ -U are given in [47].

3.1. Calculation of pure uranium properties

For uranium crystal structures we calculate general characteristics that could be evidentially
compared with the data measured in the experiments. The results are summarized in table 2.
As can be seen, the bulk modulus of α-U agrees well with the existing experimental data.
Elastic constants are within 20–40% of the experimental points. In the case of non-diagonal
components c12 and c13, disagreement is more significant. The melting temperature of U
was computed by the two-phase simulation technique. This method implies work with a
simulation box containing two coexisting phases (in our case: solid bcc and liquid uranium)
with the interphase boundary between. The simulation box contains 19315 atoms of U at zero
pressure. Similar simulations were previously successfully applied to other materials, and a
detailed description of the calculation procedure can be found elsewhere [43–46]. Results of
this test show that the potential predicts uranium melting at the temperature about 10% higher
than the real value [47].

Figure 7 shows the simulated room-temperature isotherm of α-U. The P –V dependence
was traced over several independent MD calculations carried out at the given ratios V/V0. In
such a manner all stress components were kept equal: Pxx = Pyy = Pzz = P in each of the
calculation points. It is observed that the isotherm repeats the prediction made with the U
potential [31] pretty well and agrees with the set of experimental data resulting from room-
temperature compression of α-U via diamond-anvil cells (DAC) [47–49]. Using MD with
the potential proposed we also reproduce the experimentally measured pressure–temperature–
volume (P –T –V ) dependence for the orthorhombic α-U. In [50] x-ray diffraction experiments
were conducted under well-controlled P –T conditions, and the corresponding lattice constants
together with the atomic volume were defined. The whole list of the observed P –T –V
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Figure 7. Room-temperature isotherm of α-U: 1, 2, 3—experimental results [47–49]; 4—result
of MD calculations with the potential for pure U [31]. 5—simulation with the potential for
U–Mo–Xe.

Figure 8. Pressure-temperature dependence for α-U at V ≈ V (300 K). 1—experimental high
pressure–temperature diffraction study [50]. 2—simulation with the potential for pure U [31].
3—this work. The separate legend in the right corner of the picture contains strain values (εxx ;
εyy ; εzz) for each point, in %.

data values is given in [50]. In the provided MD simulations the T and the a(T )/a(300),
b(T )/b(300), c(T )/c(300) and V (T )/V (300) ratios in each temperature point were kept
strongly equal to those measured in the experiment. The pressure values were recorded as the
output of MD runs with 4000 atoms in a simulation box. The data points gathered from this
simulation are plotted in figure 8 together with the experimental data. The separate legend in
the right corner of the picture shows the strain values εxx , εyy and εzz in each calculation point
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Table 3. Structure, elastic constants and melting temperature of pure molybdenum.

EAM, this work EAM Mo–Xe [30] EAM [52] EAM [51] Experiment [79, 80]

a 3.1474 3.1470 3.1471 3.1465 3.1472
c11 538 550 420 490 465
c12 237 220 170 169 176
Tm 2690 2630 — 3350 2890

Note: The lattice parameter (a, provided at T near 0 K) is given in Å, and room-temperature elastic
constants cij are in GPa. Melting temperature Tm is in kelvin.

Figure 9. Thermal expansion of pure Mo at zero pressure. 1—experiment [79]. 2, 3—EAM
potentials [51, 52]. 4—potential for the binary Mo–Xe system [30]. 5—this work.

estimated (in %) as

εxx(T ) = a(T ) − a(300)

a(300)
× 100, (8)

εyy(T ) = b(T ) − b(300)

b(300)
× 100, (9)

εzz(T ) = c(T ) − c(300)

c(300)
× 100, (10)

where a, b and c are the lattice constants of α-U and T is the temperature. Figure 8 also shows
the difference between EAM U–Mo–Xe and EAM U [31] performance, but both examined
potentials describe this property rather well.

3.2. Calculation of pure molybdenum properties

The other extreme significant case in the study of the U–Mo–Xe system is the investigation
of the properties of pure molybdenum. From table 3, which contains lattice and elastic
characteristics of Mo one can see that the EAM Mo potential implemented in EAM U–Mo–Xe
describes its structure well. Elastic constants deviate from the experimental values at ∼30%,
while the calculations with the EAM Mo–Xe potential give a better description of c11 and c12.

During the verification the thermal expansion of pure Mo was evaluated. Corresponding
data (for zero pressure and temperatures up to 2500 K) are plotted in figure 9. The EAM
U–Mo–Xe shows good agreement with the experimental curve, as well as with the previously
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Figure 10. The room-temperature isotherm of molybdenum: 1—experiment [53]; 2,3,4—result
of MD calculations with the EAM potentials for Mo [30, 51, 52]; 5—simulation with the potential
for U–Mo–Xe. V0 = V (300 K).

developed binary EAM Mo–Xe potential. In contrast, simulations taken with the EAM
potentials for Mo introduced by Derlet [51] and Finnis and Sinclair [52] are also presented and
proved to give insufficient description of thermal expansion at high temperatures.

A comparison between the experimental room-temperature compression data and
computed isotherms also shows that the potential provides better agreement with the experiment
[53] than other widely used molybdenum potentials [51, 52]. Figure 10 proves that the
dependence obtained in this work pretty much overlays with the room-temperature isotherm
calculated with the Mo–Xe EAM potential [30].

3.3. Calculation of pure xenon properties

During the work on the verification of the repeatability of pure xenon properties the
computations of solid and disordered xenon were performed. Considering the situation of
the EAM Xe potential implemented in the resulting EAM U–Mo–Xe model it should be
emphasized that because of rather small rcut it is not appropriate for investigating cold low-
density Xe states with large interatomic distances. To test the behaviour of cold fcc Xe under
compression we compute the room-temperature isotherm. A simulation was performed with
4000 atoms of fcc Xe; the temperature was kept constant (270 K). The isotherm is plotted in
figure 11 along with the other existing data including experimentally measured points [54–
56], and the simulation results reported in [43], where the interatomic potential for xenon was
adopted in exp-6 format. As one can see, the present results are slightly above the experimental
points and the curve obtained with the Xe exp-6 potential. But the less the volume, the better
is agreement. We found that our calculations appear to match the recent x-ray diffraction
study [56] very well. To sum up, the room-temperature isotherm is reproduced with good
accuracy, which confirms the suitability of the potential for solving the problems dealing with
the fcc xenon under high pressures.

The exp-6 Xe potential was previously used to predict the high-temperature P –V

dependence for disordered xenon at low densities. Note that this potential model aimed at
pure Xe has a significantly larger cut-off: 14 Å. After analyses of the same P –V dependence
obtained in this work, we conclude that our model compares rather well with the exp-6
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Figure 11. Room-temperature isotherm of fcc xenon. 1—Experimental data measured by DAC
[54]; 2 and 3—recent experimental diamond-anvil cell measurements [55] and [56]; 4—simulation
with exp-6 potential [43]; 5—simulation with EAM Mo–Xe [30]; 6—results of this work.

Figure 12. Pressure-volume dependence for liquid xenon at 900 K. 1—EOS Kaplun [87]; 2—EOS
Ronchi [88]; 3—MD simulations with exp-6 potential [89]; 4—MD simulations with Mo–Xe
potential [30]; 5—results of this work.

predictions (see figure 12 where some data derived from the theoretical equations of state
for Xe are also indicated). Continuing the evaluation of our model among the experimental
and exp-6 potential data, the melting line at the pressures up to 25 GPa was traced (figure 13).

The information gathered in this subsection shows that the developed EAM Xe potential is
applicable for the simulation of xenon. This conclusion is based on a satisfactory comparative
study between the present potential, exp-6 form, theoretical and experimental results existing
for xenon.
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Figure 13. Melting temperatures of fcc xenon at pressure up to 25 GPa. 1—Experimental
data [90, 91]; 2—simulation with exp-6 Xe interatomic potential [43]; 3—dependence calculated
using the EAM Mo–Xe potential; 4—result of this work.

4. Calculation of the characteristics of the binary U–Mo system: U–10 wt%Mo alloy,
U2Mo intermetallic and U–Mo solid solutions

The main purpose of the potential development is to obtain an opportunity to study γ -U–Mo
fuel and their possible modifications using MD. Here we present the calculation results for some
general characteristics of the most prominent U–10 wt% Mo alloy and U2Mo intermetallic.
According to the reported data, the addition of 10 wt% (or 21.6 at%) of molybdenum to uranium
leads to the formation of a substitutional solution with bcc structure, where the lattice parameter
equals a (see the first example in figure 1).

To create the random distribution of substitutional Mo atoms in the equilibrium
U–10 wt%Mo alloy the preliminary simulation procedure was adopted. The full size of the
initial model was set to be 2000 atoms (90 wt% of U, 10 wt% of Mo), with Mo substitutional
atoms ordered in some given way. Then to drive out the Mo order the model was heated to
1500 K and relaxed at high temperature for several tens of ns. After heating, the system was
cooled, and the main relaxation stage was provided at 800 K. The temperature was kept constant
via a Langevin thermostat. The simulation continued until the average potential energy value
became constant and did not change in time. The decrease in the potential energy takes about
0.4 µs (∼4 × 108 MD steps, one step equals 10−3 ps). According to figure 14 one might
estimate the resulted structure by comparison of its radial-distribution functions with the one
computed for U in pure γ -U at the same lattice parameter. All the indicated peaks for U–U,
U–Mo, Mo–Mo in U–10 wt%Mo and U–U in pure bcc U appear at the same distances, and the
distribution functions are found to be quite similar. The following calculations dealing with
U–10 wt%Mo properties were taken using this preliminary relaxed structure containing 2000
atoms.

In the case of two-phase melting computations the cubic model with 2000 atoms was
replicated six times in one direction to come to a parallelepiped containing 12 000 atoms.
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Figure 14. Radial-distribution function calculated for U–10Mo model at 300 K: 1—for U–U,
2—for U–Mo, 3—for Mo–Mo; 4—RDF calculated for bcc U at the same lattice parameter and
T = 900 K, introduced for comparison.

Table 4. Structure and elastic properties of U–10 wt%Mo alloy and U2Mo at 300 K and 0 GPa.

EAM, this work Experiment

U–10 wt%Mo
a (300 K) 3.407 3.4129 [81]; 3.4213 [20]
a (800 K) 3.417 3.44
Tm 1500 1455 [20]
E 76 65 [15], 60–71 [13], 69.8 [82],

82.9–91.5 [83], 87.1 [84]
α(300–800 K) 6.7 11.5–16.7 [60]; 1–15 [57]

U2Mo
a1 3.422 3.426 [62]
a2 3.325 3.426
c 9.888 9.834

Note: All lattice constants are presented in Å. Reference values for U–10 wt%Mo lattice parameters
are given in [20, 81]. In the case of U2Mo two lattice parameters that should be equal to a are
denoted as a1 and a2 because of the difference in their values. Young’s modulus E of U–10 wt%Mo
is in GPa, Tm is in K and the thermal expansion coefficient α(T ) is in 10−6 K−1.

The melting temperature of U–10 wt%Mo at zero pressure is predicted to be sufficiently
near the value determined from the phase diagram of the U–Mo system [11, 13]. The study
undertaken here proves that the model structure of the U–10 wt%Mo alloy built with the
proposed U–Mo–Xe potential remains stable in an appropriate temperature range: from 300 K
up to the melting point (∼1500 K).

Elastic properties of the fuel model were examined by the computation of the modulus
of elasticity E at 300 K. It was found to be close to the results of engineering stress–strain
experiments. The difference between the experimental Young’s modulus summarized in table 4
arises from the different geometry of the sample used together with the different order of the
heat treatment. The most recent experiments mentioned above provide mechanical testing of
the fuel foils. We also use our model to estimate the density of the simulated alloy. At 300 K
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Figure 15. Density of the U–10Mo alloy. 1,2,4—experimental study [58–60] respectively;
3—recent experimental measurements [57]; 5—theoretical prediction obtained from the atomic
volume calculated in [23] at 0 K; 6—results of the MD simulation with the potential for U–Mo–Xe.

it appears to be about 17.4 g cm−3 (see figure 15), while the experimental measurements for
U–10 wt%Mo produce data in the interval from 16 [57] to 17.2 g cm−3 [58, 59] depending on
the porosity presence (in [57] it is considered to be significant).

We have also traced how the lattice constant of bcc U–10 wt%Mo changes with the
temperature to obtain the thermal expansion coefficient. The lattice parameters for 300
and 800 K are given in table 4. They allow us to estimate the average linear thermal
expansion coefficient at 300–800 K to be about 6.7×10−6 K−1, about two times lower than the
experimentally provided values. According to Klein [60], thermal expansion of U–10 wt%Mo
should change from 11.5 × 10−6 to 16.7 × 10−6 K−1 in the same temperature interval. Those
measurements are proved by the recent experimental study on U–10 wt%Mo [57], which stated
that α(300 K) = 10 × 10−6 K−1 and for 800 K it is 15 × 10−6 K−1. This comparison leads us
to conclude that in spite of the fact that the interatomic potential gives an accurate description
of lattice parameter a at 300 K, it underestimates the thermal expansion coefficient.

Speaking of the possible modifications of the U–Mo fuel, we kept in mind that one of the
most possible fuel structure changes can be provoked by the decomposition of bcc γ -U–Mo
into the mixture of orthorhombic α-U and ordered intermetallic U2Mo. The tendency of
nucleation of the ordered U2Mo compound and low-temperature orthorhombic α-U in the
metastable γ -U–Mo under irradiation is experimentally observed at T � 900 K. Using MD
with the potential for U–Mo–Xe we examined whether it is suitable to investigate the U2Mo
compound and α-U–Mo, in spite of the fact that none of these structures have been included
in the reference database during the potential derivation (see table 1). Originally, real U2Mo
is a MoSi2-type intermetallic compound, where two lattice constants equal a and the third
one equals c (c/a = 2.876) [61, 62]. The model structure of U2Mo built with the EAM
U–Mo–Xe potential turns out to be slightly deformed. We observe some lattice distortion of
the ideal tetragonal structure leading to the difference in the lattice constants that originally
should be equal to a (see table 4). Note that despite this all lattice constants conform well to
the experimental data. The potential was also tested for the ability to reproduce stable solid
α-U–Mo solutions existing in the U–Mo phase diagram at low temperatures up to 1.5–2 at%
of Mo (see [11]). A number of computations were performed for the α-U structure with 0.4,
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0.7, 1.2 and 4.2 at% of U atoms substituted by Mo. In all cases the structure remains stable at
300 K for the entire time of the observations (16 ns for each MD run).

The list of the results proves that the potential provides various levels of accuracy
while simulating various characteristics of U–10 wt%Mo, U2Mo and α-U–Mo solid solutions.
Nevertheless, we can conclude that the overall quality of the material representation is rather
satisfactory and allows for possibility of the investigation of these significant phases in the
U–Mo system.

5. Single defect properties of pure uranium and molybdenum

The potential was designed primarily for the investigation of the defects generated in U–Mo
alloys by radiation or fission products. The predictive ability of the MD method can be useful
here due to a scarcity of experimental and theoretical data on the structure and mobility of
radiation defects in γ -U–Mo alloys. This implies that there are no evident data for the direct
verification of the potential by analyses of defect formation and migration in the U–Mo alloy.
Hence, the starting point in this field was the verification of single point-defect properties in
pure U and Mo.

We calculate a single point defect formation energy for solid γ -uranium and molybdenum.
This energy is determined as follows, for vacancy:

Ef
vac = En−1 − n − 1

n
En, (11)

and for SIA:

Ef
SIA = En+1 − n + 1

n
En. (12)

Here n is the number of atoms in the model of the crystal lattice without any defect. En is the
energy of this lattice, En−1 corresponds to the model that contains a single vacancy, En+1 is
the energy of the structure with one additional SIA. We have performed structural relaxations
for the models of γ -U and Mo with a single vacancy/SIA to determine the energy values En−1

and En+1, respectively.
Formation energies of defects in γ -U are estimated at finite temperatures from the

energies averaged along a long molecular dynamic trajectory in the NV T ensemble. With
the potential for U–Mo–Xe we have obtained that the U-vacancy formation energy varies from
approximately 2.2 eV at 500 K to 3 eV at 1500 K. A similar increase in the U-vacancy formation
energy (from 1.8 to 2.3 eV) is reported in [63] from the classical MD with the modified EAM
potential. The values from the MD simulations are overestimated in comparison with the
data [64, 65] obtained both in DFT static calculations (approximately from 1.1 to 1.4 eV—see
table 6 for details) and in positron annihilation experiments (approximately 1.2 eV).

Uranium self-interstitial formation energy is around 1.05 eV and is nearly temperature
independent (according to MD simulations with the U–Mo–Xe potential). This value agrees
well with the estimates from the DFT static calculations: from 0.5 to 1.5 eV depending on
the configuration [65]. One might note that the formation energies of the intrinsic interstitials
and vacancies in γ -U are quite close to each other; hence both are able to contribute to a self-
duffusion coefficient. Moreover, our MD simulations of the diffusion of point defects show
that the U-SIA are substantially more mobile than the vacancies. The sum of SIA formation
(1.05 eV) and migration (around 0.15 eV) energies is quite close to the activation energy of
self-diffusion 1.15 eV reported in experiments [66].

The self-interstitial atom formation energies for pure molybdenum in the form of relative
formation energies of six possible defect configurations are plotted in figure 16, here

δE = Ef − Ef
min, (13)
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Figure 16. SIA formation energies for Mo (relative to the minimum value for each of the
potentials). 1,2—DFT predictions [67, 68]; 3,4,5—values calculated with EAM potentials
[30, 51, 52]; 6—result obtained in this work.

Table 5. The energy of a single-vacancy formation in molybdenum (eV).

EAM, this work EAM [30] Ab initio [68] Experiment [85]

2.61 2.79 2.96 2.6–3.2

Table 6. The energy of a single-vacancy formation in γ -U (eV).

EAM, DFT-MD,
this work MEAM [63] Ab initio [64] Ab initio [65] EAM [31] this work Expt. [86]

2.2–3.0 1.8–2.3 1.08 1.384 1.52 1.3 1.20 ± 0.25

and Ef
min is the minimal formation energy of SIA configuration (dumbbell 〈1 1 0〉 in the case

of EAM U–Mo–Xe). The figure shows that the potential can describe the hierarchy of defect
energies in agreement with the one calculated within the DFT in [67, 68]. From table 5 we can
also see that the estimated vacancy formation energy for pure Mo agrees well with the existing
DFT and experimental data.

6. Conclusions

The study presented here is the first attempt to provide MD simulation of U–Mo fuel alloys.
To perform the investigations a new EAM interatomic potential for the U–Mo–Xe system is
proposed. It is fitted to the ab initio data and tested by the calculation of the general properties
of the U, Mo, Xe, U–Mo alloys and U2Mo intermetallic. The results obtained for the elastic
constants, thermal expansion, room-temperature isotherm and melting temperature of all the
phases studied are consistent with the experimental data. The single defect (vacancy, SIA)
formation energies in U and Mo agree with the results of ab initio calculations. The potential
is proved to be able to reproduce the stable structure, modulus of elasticity, room-temperature
density and melting temperature of U–10 wt%Mo, while thermal expansion of the alloy model
is found to be about two times lower than the experimental values. The verification results
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lead us to conclude that the potential proposed provides the opportunity to analyse various
complicated processes taking place in the ternary U–Mo–Xe system.

One of the most important applications of the developed interatomic potential is the
modelling of defect evolution in U–Mo alloys on the atomistic scale. This problem is a
matter of great interest in nuclear engineering but, in spite of this, many questions existing in
the field still remain open. They deal with single-point defect formation and evolution and
with large-scale structure changes. For example, the latter can be related to the processes of
the voids (or fission gas bubbles) superlattice formation experimentally observed for U–Mo
fuel by Rest et al and Gan et al [69–71]. These phenomena have not been made clear and can
be studied using MD. The potential proposed can be applied to the investigation of structural
and phase transitions caused by the passage of a high-energy ion through the fuel material. The
detailed atomistic simulations of the processes described above are to be carried out in future.
The potential is supposed to be used to expand our knowledge about the processes existing
in the U–Mo fuel compositions under irradiation together with corresponding changes in the
fuel structure and strength properties. The resulting data can be deployed as an input for the
theoretical models of the long time evolution of damaged material [72–75].
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