
ISSN 2070�0482, Mathematical Models and Computer Simulations, 2013, Vol. 5, No. 4, pp. 305–333. © Pleiades Publishing, Ltd., 2013.
Original Russian Text © G.E. Norman, V.V. Stegailov, 2012, published in Matematicheskoe Modelirovanie, 2012, Vol. 24, No. 6, pp. 3–44.

305

INTRODUCTION

In 1957, a paper was published by B.J. Alder and T.E. Wainwright [1], who used newly emerging com�
puters to integrate classical equations of motion for a system of hard spheres. This material was presented
in greater detail in [2]. The results were obtained both for the equation of state and for the correlation
functions. The considered systems varied from several tens to several hundreds of particles. The works
were immediately noticed by I.Z. Fisher [3, 4].

The approach proposed in [1, 2], was named the molecular dynamics method (MDM), as originally
molecules rather than atoms were understood by hard spheres. As early as in [5, 6], particle systems with
more realistic Born–Mayer, Debye, and Lennard–Jones potentials were considered. Further, systems of
interacting atoms were mostly considered. The interatomic interaction potentials became increasingly
sophisticated for describing more and more diverse physical objects. The term atomistic simulation
emerged and gained increasing popularity but it also fails to embrace all the MDM applications because
it has to cover, among other objects included in consideration, electrolytes and nondegenerate electron�
ion plasma. The combination “molecular dynamics method” has appeared very stable and remains the
only term for this method, although the word “molecules” now refers not only and not so much to a mol�
ecule as such but as a rule to atoms, ions, and even electrons.

MDM is applied to sufficiently dense and nonideal systems when it is no longer possible to introduce
the concept of the mean free path and theories based on the expansion in the small parameter lose their
meaning. At the same time, it is desirable to continue MD calculations until the parameters of the studied
system enable comparing with the results obtained for rarefied systems. This makes it possible to cover the
entire range of practical importance.

MDM has now become one of the most important methods in the theory of condensed matter. The
interaction of particles with each other is described by different pair and multiparticle potentials. Ther�
modynamic and transport properties were examined (equations of state, diffusion, viscosity, thermal con�
ductivity, etc.), structure, time correlation functions, and some relaxation processes for a wide variety of
systems, including simple liquid metals, semiconductors, dielectrics, covalent systems, collisional and
dusty plasma colloids, glasses, polymers, biopolymers, and liquid crystals. Different aggregate states have
been described. Along with homogeneous systems, phase equilibria and the decay of metastable states
were modeled, as well as clusters, nanocrystals, processes on the surface, shock waves and solitons, the
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dynamics of radiation damage in crystals, fracture of materials, cracking, and various biomolecular sys�
tems.

The progress in computer facilities enabled researchers to consider an increasing number of particles.
Calculations have already been performed for 300 billions [7] and a trillion [8] particles. The realism of
the models is due to the choice of the multiparticle interaction potentials derived from quantum�mechan�
ical calculations. A huge number of publications on this topic over the years has generated many surveys
and monographs. We would like to mention, for instance, [9–24].

Attempts have been made to construct a quantum MDM [25] for the description of chemical reac�
tions, equilibrium and nonequilibrium systems with degenerate electrons, and some other problems.
Despite the progress in this direction, it has not yet been possible to create quantum MDM as versatile as
the classical MDM. In this review, we restrict ourselves to the classical MDM, focusing on the consistent
exposition of the theoretical foundations of the method.The undeniable practical efficiency of the classi�
cal MDM and the simplicity of its underlying assumptions seems to leave no room for doubt as to its the�
oretical validity. In this connection, MDM is generally regarded as a purely computational method, and
many researchers employing it usually do not give a second thought to what is actually calculated by
MDM, being satisfied with the agreement with the experimental data provided by MDM and its predictive
power.

However, some theoretical physicists have long realized that MDM, despite its numerical character
and utilitarian focus, concerns the foundations of classical statistical physics and, in turn, requires a theory
for its logical justification. MDM raises very serious questions.

In the first place, the total energy in the MD calculation fluctuates. The law of energy conservation
only holds on the average, in contrast to the equations of classical mechanics. This fact was noted at the
initial stage of the MDM development but it had not been properly recognized and was treated as a minor
error.

In the second place, Henri Poincaré showed long ago that classical dynamical systems of many particles
were systems with strong local instability [26]. These concepts were introduced in physics by N.S. Krylov [27]
in book [28]. In connection with MDM, this circumstance was pointed out by E.E. Shnol’ [29]. These
issues were considered in [11, 30–32]. The authors of [33] referred to Ya. Sinai (the book [28] had not yet
been translated at the time), who analyzed the results to clarify the exponential divergence of the trajec�
tories of particles in the Lennard–Jones system.

The local instability means that different particle trajectories calculated for the same set of initial con�
ditions, but, for example, with a different step of numerical integration, by no means correspond to a sin�
gle Newtonian dynamic trajectory and exponentially diverge from it, as well as from each other. And the
method devised for the solution of the Cauchy problem but leading to a bunch of exponentially diverging
trajectories is unacceptable for solving differential equations from the viewpoint of the theory of numerical
methods. 

Despite the huge difference in scale, MDM problems are similar to the restriction on the limit of the
predictability of weather forecasting [34−36]. The limit of the predictability of particle trajectories was cal�
culated in [30] for the Lennard–Jones system.

Starting from [33], several authors paid attention to the increased number of numerical errors due to
the instability of the equations of motion [10, 29, 37–41]. A constraint was proposed [38, 39] requiring
MD trajectory to be close to the exact solution of Newton equations over the entire length used for statis�
tical averaging. Since it was impossible to satisfy this requirement, E. Shnol’ [29] pointed out that MDM
was not entirely valid, and R.F. Fox [38] even doubted MDM’s reasonableness. Work [38] stimulated the
precision calculations [39]. However, instead of one long MD trajectory, a set of short sections of the same
total sum length was used for averaging. Each short section was calculated with sufficient accuracy, but the
initial conditions for them were selected from the canonical ensemble using the Monte Carlo method.
Therefore, work [39] was unrelated to the problem for which it was intended, which was noted as early as
in [42].

In the third place, how can irreversibility arise in the method based on the solution of the reversible
Newton equations? It certainly emerges, as MDM perfectly describes irreversible processes. As early as in
1967, members of I. Prigogine’s group calculated the evolution of the H�function for a system of 100 hard
discs [43] and its recovery for time�reversible trajectories. It was found that the recovery only took place
for short trajectories in the range of 1–2 relaxation times; the question of exponential instability was not
discussed. In the attempt to figure out the cause of the irreversibility, Prigogine returned to this work in
1989 [44], drawing also to later numerical experiments [45, 46] on the emergence of correlations in a sys�
tem of hard disks as a result of collisions. Prigogine refutes persistent unsuccessful attempts to prove the
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second law of thermodynamics, the kinetic Boltzmann equation, and other irreversible laws relying solely
on reversible Newton equations.

This discussion began over a hundred years ago starting from the arguments against L. Boltzmann
voiced by E. Zermelo and J. Loschmidt (see, for instance, [26, 47, 48]. R. Feynman agreed with Boltz�
mann’s arguments in his discussion with Zermelo and Loschmidt and formulated them in the following
way: “Things are irreversible only in the sense that going one way is likely, but going the other way, although
it is possible but according to the laws of physics, would not happen in a million years” [49, p.119]. Bolt�
zmann’s and Feynman’s viewpoint is shared by N. Bogolyubov, B.V. Chirikov, Sinai [48, 50, 51], J.L. Leb�
owitz [52], and W.G. Hoover [15]. Reasons are offered recalling the colossal number of atoms and mole�
cules making up macroscopic bodies, the practical impossibility of the complete mechanical description
of such bodies, the nonlinearity of dynamical systems [53] and others [54, 55]. A.M. Yevseev [56] tried to
work out a “purely mechanical theory of thermodynamics” by means of MDM.

Krylov [28] and K.R. Popper [47] did not share the views of Boltzmann and his supporters. Boltz�
mann’s concept, by virtue of Poincare’s recurrence theorem, admits the existence of the world with a
decreasing entropy, and, therefore, should be rejected [47]. Objections to Boltzmann were also raised by
J. von Neumann [57], L. D. Landau [58], Prigogine [44, 59, 60], and B. B. Kadomtsev [61] assuming that
only quantum mechanics could be used to justify irreversibility. This viewpoint was most clearly articu�
lated by Landau [58] who pointed out that nonequivalence of the both time directions in quantum
mechanics “is manifested in connection with the central process of interaction of the the quantum mechanical
object with the system for quantum mechanics, obeying with a significant degree of accuracy the classical
mechanics” (see also [62] 47). Note that Landau’s view echoes a brief remark made by Neumann as early
as 1929 [63, footnote on p. 337]. However, in the same work, Neumann remarked that it was still unclear
whether the irreversibility of the measurement process had anything to do with the irreversibility of what
was actually taking place. It was noted in [64–67] that in the equations of motion of any classical molec�
ular system there should necessarily exist some additional terms of the quantum nature. These terms are
small but finite, have a stochastic nature, and trigger Lyapunov’s instability.

The round�table discussion “Microscopic origins of macroscopic irreversibility” was held at the 20th

International Conference on Statistical Physics (Paris, 1998). Two opposing points of view in front of two
thousand scientists were defended by Lebowitz and Prigogine. A dry and brief description of their emo�
tional speeches is given in [52, 59]. In his verbal report, Lebowitz very extensively expounded MD’s results
[68] as an important argument in favor of his point of view. In [52] only a few lines were devoted to this
work, but Lebowitz still fails to see that the conclusions of [68] are erroneous, which will be pointed out
in paragraph 2.5.

Actually, MDM ran counter to some established ideas of classical statistical physics, which are set out,
for example, in [49, 58]. The discussion of these fundamental issues was launched in [11, 30, 42, 69]. They
were developed in [31, 32] and in this paper. We consider the place of MDM in the system of basic con�
cepts of statistical physics and physical kinetics and where it complements these concepts in terms of the
choice of number of particles, the probabilistic character of the results of classical statistics, etc. 

The original intent of the MDM is set out in Section 1, where the immediately manifested difficulties
are also indicated. In Section 2 we analyze the set of particle trajectories that are actually calculated in
MDM, i.e., the object whose properties are actually investigated by this method. In paragraphs 2.1–2.4
the exponential divergence of particle trajectories is treated, concepts of K�entropy and the dynamic
memory time are introduced as applied to MDM problems, the connection of these notions with the total
energy fluctuations is explained, and the fundamental restriction of the memory time is shown due to the
finiteness of the number length in a computer. Paragraphs 2.5 and 2.6 are devoted to the conclusions from
this analysis, i.e., the dynamic and stochastic properties of the set of particle trajectories calculated by
MDM and the non�Hamiltonian character of these trajectories. MDM problems are compared to the
problem of dynamic chaos [48, 50, 51, 70, 71, 72]. In Section 3, we attempt to reformulate some of the
postulates of classical statistical physics relying on the MDM results; we also briefly point out some phys�
ical analogs of numerical integration errors. In the conclusion, in particular, practical requirements for
MD simulation are listed following from the performed analysis of the MDM fundamentals.

§
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1. ORIGINAL IDEA OF MDM

1.1. Initial Equations

The dynamics of N interacting atoms is described by the system of equations

(1)

or

(2)

where   and  are the mass, coordinate, and velocity of the ith particle ( ) and  is the force
acting on it, which is defined as 

(3)

The function U determines the physical properties of the system under study. The MD and Monte
Carlo methods stimulated a sharp increase in interest in the development of investigations in the U type.
At the first stage, the simplest systems were examined such as, for instance, solid argon, using the existing
pair potentials at that time, i.e., Lennard–Jones and Buckingham. Their parameters were selected so that
they were consistent with the experimental data about the properties of the considered substances. The
transition to the exact pair potentials derived from the beam experiments revealed the need to take account
of multiparticle interatomic interactions. In the general case

(4)

For modeling inert gases, it proved sufficient only to consider the contribution of triple interactions. The
description of the properties of semiconductors and metals becomes much more accurate when multipar�
ticle (up to several dozens) components are taken into account (see, for instance, [73–77]). Initially func�
tion U was found empirically from the condition requiring that the set of the model characteristics was
consistent with the experimental data [78–82]. At the same time, some properties of substances can, gen�
erally speaking, be described with the same accuracy not by one but by a whole family of potentials [83].
At present the study of interatomic interaction has passed to the area of ab initio approaches. The dynam�
ics of a polyatomic system in the nonrelativistic approximation is described by the Schrödinger equation
with the Hamiltonian function of the form 

(5)

containing terms corresponding to the kinetic energy of the nuclei and electrons and the Coulomb energy
of their interaction. The fact that electrons are much lighter than nuclei allows us to separate the move�
ment of ions and electrons and consider the stationary problem for an electron subsystem in the adiabatic
(Born–Oppenheimer) approximation. In this case, the wave function can be represented as

 where  describes the motion of the nuclei and  depends
parametrically on the coordinates of the nuclei  and describes the electron subsystem. Here the prob�
lem is split into two equations

and  
where

(6)

(7)

The solution of the Schrödinger equation for the electron subsystem at fixed positions of the nuclei
determines the eigenvalues  which are parametrically dependent on the nuclear coordinates. Thus,
function U is the potential of the interatomic interaction in the ground state of the electron subsystem.
However, the solutions of quantum mechanical equations for an electron subsystem are only possible for
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systems with a small number of atoms (up to several hundred). In such a way, the form of U can be
obtained. By the use of multiparticle potentials of U of this type, investigations into the realistic models of
metals with the number of atoms of up to hundreds of millions within the classical MD frame became pos�
sible (see, for instance, [84]). The transition to a fully classical description of polyatomic system corre�
sponds to the assumption of the smallness of the de Broglie wavelength of atoms compared to the charac�
teristic interparticle distance in the system that takes place, provided the temperatures are not too low for
most of the chemical elements except the lightest ones.

1.2. Numerical Schemes 

The most popular schemes are those in which the approximation error of the second derivative

 is subject to the first�order difference scheme

(8)

where  is the numerical integration step. The simplest of such schemes is the implicit Euler scheme of
the first order of accuracy with respect to the coordinates and velocities 

(9)

The velocity Verlet scheme (of the second order of accuracy) is widely used:

(10)

The optimality of schemes like (8)–(10) with respect to the accuracy/performance ratio was explained in
[85, 86], where the efficiency of schemes of different orders of accuracy was investigated as applied to MD
problems. The idea can be illustrated by the following arguments. We consider some segment of an MD
trajectory. Let its calculation using the scheme (8) require  steps. Let the same accuracy (with respect
to the fluctuation of the total energy, see Section 2.3) be achievable by using a scheme of a higher order
over  steps,  However, at each step the calculation of the forces acting on atoms (the most
resource�consuming part of the program) is repeated  times. It turned out that for standard, close to the
maximum, values of numerical integration steps  (for scheme (8)  = 1) for all the schemes
studied in [85, 86]. That is why the schemes of type (8) proved to be the most cost�effective for the MD
problems. The situation only changes when the numerical integration step decreases several times or
more, then  However, such degrees of accuracy are not used in the standard MD calculation.

When choosing the integration step  such physical characteristics of the system must be taken into
consideration as the maximum frequency of oscillations arising in it. Another physical restraint is due to
the fact that the interaction energy must change little over the length, on which the particles are displaced
during time  This is not an averaged characteristic as it concerns every particle. In this connection, a
variable integration step can be used.

1.3. MD Simulation

1.3.1. Molecular dynamics experiment. MDM can be classified as a computer experiment; i.e., it can
refer to numerical methods that, the same as real experiments, can be divided into an experimental setup
and diagnostic tools.

The solution based on numerical schemes gives us comprehensive information on the trajectories of the
particles, i.e., completely defines the system under study; it is an analog of the experimental setup, which
comprise a research object. In our case, such an object (a model of a substance) is a set of particle trajec�
tories that is calculated using MDM. Sometimes the model of the substance is understood as the mere set
of interparticle interaction potentials.

The calculated particle trajectories contain comprehensive information about the system and all the
data about its properties. It is only important to learn how to extract this information, i.e., to develop diag�
nostic tools for every property. For this purpose, MDM uses the most general, strict relations of statistical
physics and physical kinetics. Specific diagnostics depends on the experimental setup.
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The MD method is employed to investigate a variety of systems and for their adequate description, var�
ious interparticle potentials are used. Pure substances are simulated, as well as their mixtures, solutions,
alloys, etc. All aggregate states are explored, both stable and metastable. Three main directions of model�
ing can be singled out, i.e., equilibrium states, relaxation, and controlled MD.

1.3.2. Simulation of equilibrium states. In these calculations, the initial state is more or less arbitrary.
Then, the system is brought into equilibrium. Since this transition segment of the MD trajectory is auxil�
iary and excluded from further consideration, the initial conditions are chosen to reduce this section as far
as possible. With the same purpose in bringing the system into equilibrium, various workarounds are
employed not related to the real processes in the system under study.

The criteria for bringing simple systems into equilibrium can be quite trivial, i.e., achieving the con�
stant value of the average particle temperature T and the stationarity of its fluctuations. The value T is
related to the average kinetic energy 

(11)

in the absence of the motion of the mass center  However, we must ensure that the energy
(velocity) distribution of the particles should become Maxwellian, which would enable us to derive its tem�
perature. The agreement between the results of these two methods for obtaining the temperature indicates
that the equilibrium has been established in the system with respect to this parameter. In the case of a crys�
tal or liquid, we can additionally calculate the dispersion of fluctuations over a certain section of the equi�
librium trajectory. If we extend the MD calculation to the section of the same length, we can repeat the
computation of the dispersion. The coincidence of the two results will show that equilibrium has been also
attained with respect to fluctuations. We can ensure the establishment of equilibrium by checking the sta�
tionarity of all the calculated parameters. In the case of biomolecules, the criteria can be quite sophisti�
cated [87].

After the system has been brought into equilibrium the generation of the MD trajectory is continued
and this stage is considered equilibrium. All information obtained in the calculation is found from this
stage and only applies to the equilibrium state. The pressure is derived from the virial relation

(12)

which follows from the general relations  and  where F is the free energy and
Z is the statistical sum. There are, however, unresolved issues in the calculation of the pressure [88, 89].
The heat capacity is obtained as the difference between the mean square U and the square of the average
of U, etc. The transport coefficients are calculated both by the Green–Kubo formulas and from the Ein�
stein–Herzfeld relations. For example, the diffusion coefficient D can be found at the velocity autocorr�
elator 

(13)

or directly observing the particle displacements r

(14)
The agreement between the results obtained by those two methods enables us to verify the operation of

the program and the establishment of equilibrium in the system. Some subtleties arising in this case are
illustrated by the example of the diffusion coefficient in [90–95]. More information about the formulas
for other transport coefficients can be found, for instance, in [96].

MDM allows us to study fluctuations. In the case of electron�ion nondegenerate plasma, fluctuations
of different nature are possible. Modeling within a single calculation, as in the real plasma, involves all
kinds of fluctuations. MDM provides a unified approach to the fluctuations in the density of free charges,
pair electron�ion fluctuations, electron states localized in the long�wavelength density fluctuations, and
other possible fluctuations. However, investigation into the fluctuations of each type requires special diag�
nostics. A method for the diagnostics of density fluctuations is presented in [97]. The pair electron�ion
fluctuations (pair fluctuations or simply pairs) are considered in [98–100]. It is discussed there how these
pairs pass into states that can be associated with highly excited atoms as they become less collisional and
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their binding energy and life time increase. The understanding of the spectrum part adjacent to the ion�
ization limit is refined. Fluctuations of plasma pressure are studied in [101].

The calculation of all quantities by MDM assumes that averaging is performed. Thus, the accuracy of
averaging can simultaneously be determined. The analysis of the diagnostic accuracy in MDM also points
to the analogy with the real experiment.

Standard requirements to equilibrium MD calculations are briefly summarized in [102].

1.3.3. The proof of the ergodic hypothesis in MDM. In the strict expressions (11)–(14) based on the
first principles employed in MDM, averaging  means averaging with respect to the Gibbs distribution.
It had been found, however, rather long ago, that such averaging can be replaced by averaging over time
along the MD trajectory. In view of the fundamental importance of such a replacement, its reliability was
verified in various ways.

Thermodynamic quantities, such as pressure (12) and heat capacity can be calculated by the Monte
Carlo method, which only uses averaging with respect to the Gibbs distribution. The same values for the
same multiparticle system and under the same conditions can be found by the MD method using time
averaging along the MD trajectory. The results computed using the two methods coincided with each other
within the accuracy of the calculations, see, for instance, [103].

Averaging with respect to the Gibbs distribution can also be performed within MDM, see, for instance,
[39, 104]. The results coincided with the time averaging. The space averaging (14) was compared with the
time averaging (13) [105]. The choice of a particular averaging method when MDM is used is determined
by the consideration of the calculations’ convenience in each specific case.

Thus, while the ergodic hypothesis remains the subject of study in a rigorous mathematical theory [106,
107], the replacement of space averaging by time averaging along the MD trajectory has long become
[105] a common diagnostic tool in MDM.

1.3.4. Simulation of relaxation. In early works [1–6], MDM had been designed as an instrument for
studying equilibrium states. At the same time, by its very nature, MDM is a powerful tool for exploring the
dynamics of relaxation and transition processes in dense media, including highly nonequilibrium states of
such media that are inaccessible to theoretical approaches based on the smallness of the deviation from
equilibrium.

In the study of relaxation, all the information should be drawn from the initial, nonequilibrium part of
the MD trajectory, i.e., just from the part that is truncated in the MD simulation of equilibrium states. In
contrast, on approaching the MD equilibrium the calculation stops. Thus, the simulation of the real relax�
ation process starts with the physically adequate choice of the initial state, or, more precisely, of an ensem�
ble of initial states, which differ from each other microscopically but are equivalent macroscopically. The
diagnostics tracks the time variation in all the system parameters, including those that can only be found
with the help of time averaging along the stationary MD trajectory at constant parameters.

Standard requirements for the MD simulation of relaxation are presented in [102].

1.3.5. Controlled molecular dynamic experiment. In this case, the initial state is brought into equilib�
rium, just as in the equilibrium MD. Further, this state is exposed to a controlled physical action and the
dynamics of the system’s response to the applied action is studied comprising variable action and includ�
ing feedback [108–112]. By way of example, we recall the unfolding and folding of protein molecules, the
dynamics of stretching and compression of other systems, and shock waves.

1.3.6. Nonconservation of energy. The consistency of MDM’s results with the experimental data had
been maintained for years, although MDM’s capabilities were expanding with the development of com�
puter facilities and the progress in experimental techniques led to the enhancement of the database used
for comparison. All this allowed the professionals working in the field of MDM applications not to pay
attention to the fundamental issues.

At the same time, concerns were raised at the start of MDM’s development. It was found that the total

energy of the system  fluctuated during MD’s calculation;  is the kinetic
energy of the particles system. In some numerical schemes, the researchers even observed a drift of the
total energy E. The conclusion was made empirically without analyzing the causes; i.e., schemes were
selected based on (8), which did not involve any drift in E and in which E fluctuations with respect to the
mean value are of a stationary character. Only in [11] a requirement was found for the difference schemes
for MDM, i.e., approximation of the second derivative was to be even with respect to time.
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Thus, the massive popularity gained in MDM
by the schemes (8)–(10) and their variations can
be attributed not only to their best performance in
solving MDM problems but also to their station�
arity with respect to E.

The nonconservation of E, however, points to
the fact that the particle trajectories calculated by
MDM do not satisfy Newton’s equations,
because, for these equations, the total energy
should identically be conserved along the trajecto�
ries obtained from the solution of the Cauchy
problem. Thus, it appeared that the real MDM
was not consistent with its original intent. How�
ever, this fact was largely overlooked. The fluctua�
tions of E were considered a minor error of the
method and their value was often not mentioned
in publications.

2. CONCEPTS OF SUBSTANCE 
DEVELOPED IN MDM

2.1. Exponential Instability of Particle Trajectories

MDM consists in solving a system of ordinary
differential equaltions (1) or (2) under the given

initial conditions  (point  in 6N�dimen�

sional phase space), where  and

. The forces acting on the particles
are sufficiently smooth functions of the coordi�

0 0( , )r v 0Γ

0 0 0
1= ( , , )Nr r r…

0 0 0
1= ( , , )Nv v v…

nates, while the theorem of the existence and uniqueness of the solutions of the Cauchy problem hold

true. This implies that there exists an exact solution (trajectory)  (d designates dynamical)
shown in Fig. 1 by curve 0 starting from point  

The solution of system (1) or (2) can only be found numerically (starting from ). The numerical
scheme and the integration step uniquely determine the function  The finite�
difference solution is shown in Fig. 1 by the polygonal line. Since the solution is approximate, point 1 fol�
lowing point  does not lie on the original trajectory 0. Another trajectory can be drawn across point 1,
i.e., the exact solution of the system, denoted by the digit 1. Point 2 falls on the new Newtonian trajectory 2,
etc. The lines 0, 1, 2 etc., cannot cross because of the uniqueness and unambiguity of the Cauchy problem
solution. It is obvious from Fig. 1 that the total energy must fluctuate along the MD trajectory because
every subsequent point on this trajectory 0, 1, 2, etc. belongs to a new Newtonian trajectory, which corre�
sponds to a different value of the total energy. In Section 2.5.2, we will study why and for which schemes
the mean value of the total energy is still preserved. 

It becomes clear from Fig. 1 how the “coarse�graining” procedure of the Newtonian trajectory takes
place in MDM. And it is coarse�graining that is required for the emergence of irreversibility, which is one
of the central questions; we will repeatedly return to different aspects of this.

All points on the MD trajectory are described by numbers, whose number of digital places is finite and
determined by the computer used. All the remaining points on trajectories 0–4 are irrational because they
belong to the exact solutions of the system of equations (1). Therefore, the points 0–4 and all subsequent
points on the MD trajectory belong to different solutions of the system of equations (1). By itself, this fact
would be commonplace for the numerical method, if the solution remained in a small ε�neighborhood of
trajectory 0. However, due to the Lyapunov instability, the Newtonian trajectories calculated from the ini�
tial conditions close to point  but not coinciding with it exponentially, diverge with time. The same
character of divergence with the same value of the parameter can be expected on average for the MD tra�
jectories along the Newtonian trajectories.
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Fig. 1. Schematic illustration of the initial portion of the
trajectory calculated in MDM from the initial state of
system Γ0. The solid curve shows the exact solution of
the corresponding Cauchy problem. The dotted curves
show the Newtonian trajectories of the MD system, on
which there falls the solution of the finite difference
approximation.



MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 5  No. 4  2013

STOCHASTIC THEORY OF THE CLASSICAL MOLECULAR DYNAMICS METHOD 313

While there is only a general statement about the divergence of the Newtonian trajectories, the diver�
gence of the MD trajectories can be verified directly. We consider two trajectories calculated from the same
initial conditions but with different numerical integration steps  and  Let  designate the 1st

and  designate the 2nd trajectory. The trajectory�averaged differences of the coordinates (veloc�
ities) of the first and second trajectories at coinciding instants of time 

(15)

(16)

are shown in Fig. 2. They exponentially increase with time

(17)

where  is some transition time (of the order of the inverse frequency of interparticle collisions), A, B, and
 depend on the numerical scheme,  and   are the values of K�entropy (Krylov–Kolmogorov

entropy, maximum Lyapunov index averaged over the phase space). In this and the subsequent figures, the

time is expressed in terms of  where  and ε are the parameters of the Lennard–Jones potential

NS m is the mass of the particles.  ps for argon. After the period of time

(18)

 becomes constant and  passes to the diffusion mode

(19)

(20)

where  is the thermal velocity and D is the diffusion coefficient. Large�scale divergence is

no longer possible for 
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The time  (18) is the memory time, i.e., the
time, during which the MD system remembers
the fact that the initial configurations on the both
trajectories coincided at the time instant  We

introduce the dynamic memory time  that char�
acterizes the period of time, over which the corre�
lation is lost between the solution of the finite�dif�

ference approximation  and the
exact solution of the system of differential equa�

tions (1) or (2)  for the same initial

configuration. In order to find the value  calcu�
lations of  are performed for one and the same
value of  and different values of   

 etc. (Fig. 3). The limiting value of  at

 is the time  for this scheme and the
selected numerical integration step  In the

course of the numerical integration after time 
the system of particles completely “forgets” its
initial conditions and the calculated MD trajec�
tory loses any correlation with the original New�
tonian trajectory. Similar calculations were car�
ried out in [113] for the embedded atom method
potential .

Calculations of the type shown in Figs. 2 and 3

allow us to determine the values of  and  for
various states of the system. The values of K
weakly depend on  [114] starting from N ~ 10
(Fig. 4), because the determining factor for quan�
tity K is the strong close collisions. The same hap�

pens also for  As an example of the numerical
values, Fig. 5 shows the dependences of K on the
density for a liquid and crystal calculated for the
Lennard–Jones system at N = 4000 in [115] for
the region of equilibrium and metastable parame�
ters for the stability boundaries. In the case of a
crystal, the K�entropy changes monotonically
and increases as it approaches the spinodal. For a
liquid, isotherm  passes through the maxi�
mum at rather high temperatures.

The quantity  increases logarithmically
with the decrease in the numerical integration
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step. Such a result can be obtained from (17)–(19), assuming that  where n is the order of the

scheme’s accuracy. Indeed, at the time instant  

(21)

and by taking the logarithm of (21) we obtain

(22)

From the fact that the numerical integration is approximate, it also follows that energy E is only con�
stant on average. The value of E from step to step fluctuates around the mean value. Therefore, the trajec�
tory calculated in the MD method is not on the surface  as it should be for the solution of New�
ton’s equation, but is located in some layer of thickness  near the surface  [11, 42]. The
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value  is determined by the accuracy and scheme
of the numerical integration [11, 42, 69, 116, 85,

86], while  It follows from (22) that

(23)

The calculation results for the Lennard–Jones
system [31, 32] and for the collisional plasma [117]
illustrating the fulfillment of relations (22) and (23)
are presented in Figs. 6 and 7. The good agreement
is obvious. Expressions (22) and (23) can be rewrit�
ten as

(24)

where  and  are the memory times for two val�
ues  and  Expression (24) connects the K�
entropy and dynamic memory time with the noise
level in the dynamic system. This expression is con�
sistent with the concepts of [117–120].

So far, we have considered a single�component
system. In [121] plasma is studied consisting of elec�

trons and singly charged ions. For time less than 
for electrons, trajectories of both electrons and ions
had the same K�entropy. The value of K dropped
sharply for ions at large times. Preliminary calcula�
tions for macromolecules and their systems show an
exponential divergence also for angular variables. In
this case, there arise other constraints on the limits
of such divergence.

2.2. Decay of Correlations 

In [48] the value  for monatomic systems is
connected with the rate of change in the entropy S as
a result of the dynamic mixing of trajectories, and to

the quantity  the meaning of the correlation
decay time τ is assigned (see also [122, 15]). Let us
compare these statements with MDM. Let the sys�
tem preliminarily be brought into equilibrium. Fur�
ther, we consider some small singly connected ele�
ment of the phase volume  We compare its evo�
lution  during the motion of its points
according to Newton’s equations and along the MD
trajectories. In the first case, by virtue of the Liou�
ville theorem

(25)
Trajectories, for which the initial conditions are

located close points inside  exponentially diverge
with time. Since the value of the volume is preserved,
its structure becomes increasingly rugged and
stretched. The envelope of this structure encloses the
increasing volume  A good schematic drawing
illustrating this process is presented in §1.5 [48].

The character of expansion of the phase volume
envelope is also preserved in the case of motion
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along the MD trajectories. However, the phase trajectories that are obtained in the MD calculations are
coarse�grained because of the numerical errors. Each point of such a trajectory passes through the new
Newtonian trajectory. Therefore, identity (25) is violated, the phase volume swept by MD trajectories
grows, and the entropy increases. The process takes place even in the case where only one MD trajectory
is considered, i.e., when 

The time  restricts the period of exponential divergence of the trajectories. The quantity  reaches
the maximum value of  and the entropy  rises to its maximum. The reference point
for this process can be chosen arbitrarily on the MD trajectory. For any segment of the trajectory with

length  the procedure of filling the volume  is repeated again and again.

In other words, the time  is the time of filling the phase volume, in which a phase point is wandering,
representing an MD cell at the given temperature T. And  is the size of the phase space region where
the system remains in equilibrium most of the time. We can say that this region is an attractor for all MD
trajectories. This region makes up a very small fraction of the phase volume. The MDM carries out signif�
icant sampling of that part of the phase space which determines the properties of the system, just as the
Monte Carlo method performs the essential sampling in the coordinate space.

By implication of the calculation,  is also the time of the correlations’ decay  (in terms of [48]), i.e.,

 Contrary to the assumption made in [48] that  the values  and  can differ drastically.

In addition to quantitative there is also some qualitative difference between  and  

The time  is a physical characteristic (such as pressure, diffusion coefficient, etc.) of the studied
multi�particle system and does not depend on the accuracy or the scheme of the numerical integration.

The values of  are determined by both the state and properties of the system and also by the numerical
integration’s accuracy, which in this case serves as the coarse�graining procedure. However, the latter
dependence is very weak, logarithmic, as is evident from Figs. 6 and 7. Since the noise of the numerical

integration can be compared with the real noise in physical systems (see below), the time  also appears

to be a physical characteristic although less is so far known about its value than for  
In [48], the roughening parameter ε was introduced and it was proposed at the end of the derivation to

let ε tend to zero. Moreover, it was assumed that the result of the passage to the limit for the correlation
decay time did not depend on ε and remained finite for  Let us recall that, according to [48],

 for the correlation decay time at small ε and is independent of the noise level. In MDM
the role of ε is performed by the accuracy of the numerical integration. It is clear from relations (22)–(24)

and Figs. 6 and 7 that, unlike in [48],  when  As in [48], the K�entropy is a metric invariant
and does not depend on the roughening method under  

Along with the equilibrium states there can exist metastable ones. In this case the volume  prac�
tically ceases to be simply�connected. Such states arise both for simple systems and for macromolecules.
The latter ones require special consideration.

2.3. Time of Computational Memory 

The results of Section 2.1 still hold out hope that by improving the accuracy of the numerical integra�
tion, it would still be possible to extend, even if logarithmically slowly, the equilibrium trajectory satisfying
Newton’s equations. There is, however, another factor that limits this hope. An additional error arises due
to the finite accuracy of the computer representation of real numbers [123, 124]. For example, in the case
of pair potentials, the force acting on the ith particle is the sum of the contributions made by all its neigh�
bors 

(26)

where  is the ordered sequence of indices. The structure  depends on the algorithm for particle sorting
in calculating the forces. In computer summation with a finite accuracy of number representation (the
fixed number of decimal digits), different orders of summation in (26) yield different result for 
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Numerical rounding errors are a weak uncontrollable source of disturbance in the calculation of MD
trajectories. In order to study their effect on the calculation result, we used the procedure of artificial per�
mutation of indices. By the random permutations of the order of summation in (26), different versions of
rounding errors and, therefore, different values of  are implemented.

Let two trajectories  and  be calculated from
one and the same initial configuration, with one and the same numerical scheme, at one and the same step

 using one and the same computer, but let the order of summation in the calculation of the sums (26)
be different. The trajectories diverge exponentially (Fig. 8). In this case we will refer to the memory time

as the time of computational memory  This time depends on the accuracy of the machine representation

of real numbers. From the condition  we can find the value of the numerical integration step which
can provide the longest time of preserving the correlation of the MD trajectory with the true Newtonian
trajectory for a given machine accuracy and finite�difference scheme.

 Figure 9 is an example of the expected limitation of the time  by the finite accuracy of the machine
representation of real numbers. For the values of numerical integration steps employed in MD calcula�

tions (of the order 0.01–0.001 of the inverse frequency of particle oscillations), the time  is only several

factors less than  Thus, the finite accuracy of the computer representation of real numbers makes it
hopeless in the foreseeable future to integrate Newton’s equations exactly over times characteristic of
MDM.

2.4. Solution of Cauchy Problem in MDM. Irreversibility

Divergence is shown in Fig. 2 on a logarithmic scale. For most of the time less than  the absolute
value of the divergence is small and, on a linear scale, the divergence would be noticeable only in the vicin�
ity of  (Fig. 10). In contrast to Fig. 1, where only one MD trajectory is shown, Fig. 10 presents four MD
trajectories under the same initial conditions  their polygonal character is smoothed due to the great
number of the assumed integration steps. In Fig. 10a the trajectories 1–4 are calculated with increasing
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accuracy at the expense, for instance, of a reduction in  or raising the order of accuracy of the scheme.

The logarithmically slow (Section 2.1) increase in  is schematically represented in Fig. 10a. In Fig. 10b
the trajectories 1–4 calculated with the same accuracy diverge, for instance, due to the different order of

the forces summed in (26). In this case, the values  prove the same for all trajectories.

Figure 10 illustrates an important feature of the MDM, which was designed as a solution to the Cauchy
problem, i.e., instead of a single solution corresponding to the initial conditions  MDM yields a bundle

of trajectories emanating from  These trajectories exponentially diverge from each other over time 

However, for times shorter than  the solution of the Cauchy problem is, nevertheless, practically
obtained.

The fact that MDM only enables finding the solution of equations of motion for short periods of time
τ was mentioned in [29, 30, 125]. It had still been unclear why MDM yielded such successful results by
averaging over trajectories, the lengths of which were by several orders of magnitude greater than τ,
although in [30] the way to the answer had already been shown. Statements were repeatedly made (see, for
instance, [10, 40, 41, 125–127]) proclaiming that MDM simulated a microcanonical ensemble; i.e., the
MD trajectories lay on a hypersurface of constant energy in the phase space.

It was repeatedly stated that if the equations of motion were correctly solved, the MD trajectories had
to be reversible in time [10]. However, from Fig. 10 it follows that trajectories calculated in MDM are irre�

versible if the length of the trajectories exceeds time  To prove this, it is sufficient to calculate the forward
trajectory with one accuracy and the backward trajectory with a different one.

The research [68] was commissioned by Lebowitz. Its authors, unfortunately, replaced the concept of
the reversibility of a trajectory by the reversibility of the MD algorithm. Earlier, a similar mistake had been
made in [128]. In this connection, as early as in [11], it had been pointed out that according to some opin�
ions, the trajectories obtained by symmetrical difference schemes were reversible; it is true if for reversing
a trajectory not one finite point of the forward trajectory is used but two, which was proposed in [128, 68].
It should be remembered that in MDM, it is impossible to find two neighboring points belonging to one
and the same Newtonian trajectory. At the same time, if only one end point is used, as required by the
Cauchy problem, for any difference scheme trajectories will not be reversed due to the instability of the
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equations of motion. The authors of [68] could verify the irreversibility of the MD trajectories by changing
the step size for the backward trajectory.

The time  is sometimes called the horizon of predictability. In a dynamic problem of forecasting the
weather, the predictability horizon limits the time of the reliable forecast [34–36]. The prediction of
atomic trajectories is possible in the picosecond range, a reliable weather forecast is possible for a few days,
but the mathematical nature of limiting predictability is one and the same.

At the same time, there is also a significant difference. Of practical interest in the weather forecast is a
single trajectory and the deviation of the predicted one due to an unexpected small disturbance is per�
ceived by the general public as the prediction error. In MDM, on the contrary, the individual trajectory is
not of practical interest but rather the result of averaging over the total distribution of the trajectories. And
this result proves to be stable and does not depend on the scheme, the step of numerical integration, or on
the computer [102].

We also note the difference between the problems of MDM and dynamic chaos [50, 48, 51, 70–72],
which is defined as an “irregular, aperiodic state change (movement) of a dynamical system possessing the
basic properties of a random process” [129]. This result arises in the absence of random factors. In the
problem of dynamic chaos, a unique trajectory is considered to be determined by the initial conditions.
While in the problems of dynamic chaos, we can expect to obtain the characteristic of random processes
after averaging distributions rigorously conserving energy over a single dynamic trajectory; all the more so,
such distributions are attained in the MDM when averaging is performed over an ensemble of tragectories
only conserving energy on average and located in the hyperlayer  

In star clusters and other systems of gravitating bodies, the distances between the bodies are huge com�
pared to the size of the bodies themselves. Therefore, the motion of these bodies is determined by the grav�

itational potential  In molecular systems, there is also a long�range attraction potential, even if much
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Fig. 10. Schematic illustration of the linear scale of divergence of MD trajectories (shown by fine lines) against the hypo�
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weaker, i.e.,  The distances between particles in molecular systems are such that there necessarily occur
close collisions resulting from short�range repulsion. It is these collisions that determine the instability of
the motion of particles and trigger the exponential divergence of the trajectories. Krylov illustrated this by
the simplest example of the collisions of balls [28]. In the theory of systems of gravitating bodies the situ�
ation is the reverse. The motion of bodies is usually described by standard cycles and the search for excep�
tional conditions is conducted when, despite the absence of close collisions, the instability of trajectories
can still arise in the system [26].

The irreversibility in the numerical solution of equations of motion of exponentially unstable multi�
particle systems is used for the construction of encryption algorithms [130].

2.5. Non�Hamiltonian Nature and Statistical Meaning of the MDM

We proceed to the conclusions that can be drawn from the basic features of the numerical integration
in MDM analyzed in this work.

2.5.1. The accuracy of equilibrium MD calculations. The first conclusion [11] is that MDM for equilib�

rium systems is a method that (i) retains Newtonian dynamics only at times less than  and (ii) conducts
statistical averaging over the initial conditions along the MD trajectory.

Hence, in particular, the dual meaning of the accuracy of MD calculations follows. On the one hand,

dynamically independent points on the MD trajectory are separated by time intervals close to  Thus,

we estimate that the accuracy of averaging in the MD to be not worse than  where  is the length

of the MD trajectory. On the other hand, the quantity  determined the time interval over which the solu�
tion of the system of Newton’s equations is close to the exact one. Thus, by improving the accuracy of the

numerical integration, we increase  but reduce the accuracy of averaging if we retain the same value of

 The value  is uniquely connected with the fluctuation of the total energy  This implies that the
latter is also a measure of the integration accuracy.

The comparison of the values of the dynamic memory time  with the characteristic times of the
velocity autocorrelation function (VACF) shows that the interval when the VACF values normalized to

1 at  exceed 10–1 corresponds to the times less than the memory time  Thus, the correlations in this

area are dynamic correlations that follow from Newton’s equations. Correlations for time greater than 
are already of a stochastic nature rather than a dynamic one.

It would be of interest to find out whether the increase in the accuracy of the numerical integration
affects the character of the correlations during the transition from dynamic to stochastic correlations. The
available computing capability only enable the reduction in ΔE by several orders of magnitude even when

refined numerical schemes are used [116, 85, 86]. This would only double  Thus, the area of stochastic
correlations would still be preserved in the time interval where VACF decreases exponentially [131].

2.5.2. Nonconservative equations of motion. Since Newtonian dynamics are only approximately
retained in the MDM due to the impact of numerical errors, an inverse problem can be formulated con�
sisting in finding equations satisfied by the trajectories of particles calculated by MDM [11, 42, 69]. Thus,
the second conclusion is that these trajectories obey the equations

(27)

for schemes with the explicit computation of velocity at each step or

(28)

for schemes with the implicit calculation of the velocity. The quantities ξi, ηi (or zi) are additional terms
arising from the numerical integration of equations of motion (1) or (2),  The errors of the
numerical integration are made up of the scheme and rounding errors. The scheme errors are determin�
istic. Rounding errors in the computer are also formally deterministic. However, it is rounding that lays
the foundation of the algorithms for obtaining pseudorandom number sequences in random�number gen�
erators. The repetition period lengths in these sequences are so large that random numbers actually turn
out to be random, see, for instance, [132]. Therefore, for ξi, ηi and zi, a probabilistic description can be
introduced; i.e., we can use the concepts of a distribution function and correlation function.
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The presence of additional terms having pseu�
dorandom character makes the system of equations
of motion (27) or (28) non�conservative. For the
drift of the total energy to be absent and its fluctua�
tions to be of a stationary character, the work of the
force zi must average zero

(29)

From (29) there follows the evenness require�
ment for the approximation of the second derivative
[11, 42, 69]; i.e., only schemes of an even order are
suitable for MDM. Those include Verlet schemes
and leapfrog schemes. A stronger requirement for
numerical schemes for MDM is their simplecticity,
i.e., preserving the phase volume of the dynamical
system (see, for instance, [133–136]). As applied to
MD problems, the methods of geometrical numer�
ical integration and backward error analysis are
developed (see, for instance, [137]), enabling the
construction of symplectic numerical schemes with
stable preservation of the total energy of the system
on average at large times. It should be noted that the
use of symplectic schemes cannot affect the pres�
ence of the exponential divergence and stochastic
entanglement of the MD trajectories. There is an
opinion that the use of symplectic schemes is not
always necessary in MD calculations [138].

0.i i =z r�

Thus, the third conclusion is that MD systems are non�Hamiltonian. Attention is drawn in [139] to the
fact that the system of dust particles in plasma is non�Hamiltonian caused by the stochastic background
affecting the dynamics of dust particles and results from their collisions with electrons, ions, and atoms of
the dusty plasma. Dusty plasma is nothing exceptional in this regard. The stochastic background is created
already at the level of numerical integration errors (their physical counterparts are discussed below in Sec�
tion 3.4) and can only be enhanced by other factors. Thus, any classical system of molecules, atoms, ions,

and electrons is non�Hamiltonian. Only for time less than  these systems can be approximately Hamil�
tonian.

2.5.3. Ensembles in MDM. The result of the solution of the system (1) or (2) would be a phase trajec�
tory  where  is a point in the phase space and  is the initial con�
figuration. In this case, the total energy of the system would be identically conserved along the trajectory

 The set of phase states of the system would correspond to the microcanonical  NVE
ensemble. However, making use of the finite�difference approximation for the numerical solution of equa�
tions of motion of a multi�particle system resulted in the fact that the value of the total energy  along the

MD trajectory is not constant. The magnitude of the fluctuations  depends on the selected numer�

ical integration step and usually is relatively small,  However, the violation of the con�

dition E = const significantly affects the dynamic properties of the MD system. Therefore, it makes sense
to speak about a statistical ensemble  MDM generated this ensemble and operates within its
frame. This is the fourth conclusion from the performed analysis of the numerical integration in MDM.

The statistical ensemble  originated in the theory of MDM from the empirical analysis of
particle trajectories calculated by this method. However, it also has a complete analog in ergodic theory
[107], in which we consider an ensemble of points in a phase space uniformly distributed in a thin layer
near the surface of constant energy, i.e., the same ensemble  It is such an ensemble, instead
of a microcanonical one, that is used in this theory to prove the equality of two averages of the functions
depending on the coordinates and momenta of all the particles of an isolated system. The first average is
taken over time along the trajectories of the system in the phase space. The second average is the statistical
mean over the ensemble of phase points in a thin layer  The same method is used in § 112 [58]
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for the proof of the Gibbs distribution in an isolated body. Thus, the ergodic theory provides an additional
justification of the correctness of the MDM.

Distributions in small subsystems of a MD cell containing a large number of particles naturally comply
with the standard statistical ensembles, i.e., canonical and grand canonical.

In the study of both macromolecular structures and single�atom systems, broad use is made of modi�
fied MDM versions such as Langevin and stochastic MD procedures for maintaining a constant temper�
ature, the NPT�ensemble, the Nose–Hoover ensemble, and the Berendsen thermostat. In all these cases,
Newton’s equations are supplemented with additional terms maintaining the constancy of, say, pressure
and/or temperature or some flow. Any addition further distorts the solution of Newton’s equations in
comparison with the standard numerical schemes described above. However, the duration of the dynamic

memory time  can change insignificantly due to the semilogarithmic dependence of the value of  on
the errors introduced in solving Newton’s equations.

In Fig. 11 universal coordinates are selected analogous to Fig. 7, for which the intensity of disturbing
sources is expressed through the value of the relative fluctuations of the total energy generated by them.

The semilogarithmic dependence proved similar to Fig. 7. With excessively large  the values of 
are reduced so that the method loses its dynamic character and its capabilities are restricted to the level of
the Monte Carlo method. The proposed analysis makes it possible to estimate the reliability of the approx�
imated MDM variants and limits of their applicability in the study of dynamic properties.

3. SOME CONCLUSIONS FROM THE MDM RESULTS

MDM contains all the basic concepts of statistical physics and physical kinetics, i.e., irreversibility, the
transition to the statistical description, and for equilibrium systems it also features Gibbs distribution and
equality between time and space averages. MDM results are consistent with a variety of experimental data,
including the macroscopic properties such as the equation of state, transport coefficients, ductility, and
fracture dynamics, as well as microscopic properties, for example, the distribution function. MDM also
demonstrated its predictive power.

Thus, MDM provides an adequate and internally self�consistent description of real substances. By
description we understand the set of particle trajectories calculated in MDM. This set can be called a
model of a substance or an object that is created by this method. Thereafter, within the MDM frame, var�
ious diagnostic tools are found that are used to study the properties of the created object. The agreement
between the representations of the substance that are actually developed in the MDM and real substances
suggests that these representations are a good approximation to describe real�world properties, processes
and phenomena of classical physics. Let us turn to the conclusions that follow from the analysis of repre�
sentations of a substance which is developed in the MDM. We will try to list therewith all items both con�
sistent with the usual ideas of classical statistical physics [49, 58] and those that are at some variance with
them.

3.1. Impossibility of Solving System (1) for Times Exceeding 

It is generally assumed that by treating a multi�particle system as a mechanical multi�particle system,
setting up classical equations of motion for it, the number of which equals the number of degrees of free�
dom, and integrating these equations, you can get comprehensive information about the movement and
properties of the system; however, this problem is practically unsolvable. MDM has shown that this prob�
lem is fundamentally unsolvable, because even for three particles it is impossible to solve the system of

Newton’s equations during the time required for averaging, as this time significantly exceeds  The tra�
jectories of the particles obtained in the MDM are close to the trajectories following from Newton’s equa�

tions only over the time less than  Therefore, the time interval of possible dynamic correlations on a

microscopic level is limited by the value of 

This already suggests the indication of irreversibility of the solution for the MDM system of equations
of motion. It is not surprising, therefore, that the ideas developed in the MDM fit into the principles of
statistical physics and its results both qualitatively and quantitatively agree with the experimental data.
That is why the above�mentioned features of the trajectories calculated in MDM must be consistent with
the specifics of particle trajectories in the real systems.
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To avoid misunderstanding, we note that at the macroscopic level, the result of averaging over the dis�
tribution of trajectories is of interest rather than the trajectory of a single particle. Since this result is stable,
the time interval of possible dynamic correlations at the level of a continuous medium by many orders of

magnitude exceeds  for the trajectory of a single particle.

3.2. Choice of Particle Number 

It is usually stated that the original so�called statistical laws, due to the presence of the large number of
particles making up the body, cannot be reduced to purely mechanical laws. MDM has shown that this is
true. However, the point here is not the large number of particles but the exponential Lyapunov instability
and low noise. The boundary between the systems, for which a purely mechanical description is possible,
and systems, for which statistical laws should be used, is a system of three particles. This is because systems
of three and more particles are characterized by an exponential instability, which leads to qualitatively new
laws and patterns.

We note that we are talking about statistical laws, which are manifested when the system is monitored

over times significantly exceeding  or in the cases when averaging is performed over an ensemble of sta�
tistically independent initial conditions. The specificity of these patterns loses all content not only after
transition to mechanical systems of two particles but also for systems with many degrees of freedom, when

the dynamics of these systems is studied over times much smaller than  and no averaging is conducted
over independent initial conditions. Such problems, however, are beyond the scope of this survey.

Since the Lyapunov instability occurs in systems of three and more particles, the study of specific sta�
tistical laws can be started from three particles. Thus, for example, the equilibrium distribution can be
obtained for three (even two) particles in a limited volume when averaged over time along the MD trajec�

tory, the length of which is much greater than  These distributions are getting increasingly closer to the
Maxwellian distribution in a growing energy range with a rise in N [140, 141]. When similarly long trajec�
tories are used, the properties of clusters and their dependence on N can be investigated, starting from
three�particle ones [141]. Recently, the problem of clusters has significantly increased in importance in
connection with the theoretical analysis and MD simulations of small clusters in dust plasma. The prox�
imity to the Maxwellian distribution of particle velocities in such clusters has also been established exper�
imentally (see [142] and references therein).

In the study of homogeneous systems in periodic boundary conditions (PBC), the error of this
approach can be determined in relation to the infinite homogeneous systems and its dependence on the

number of particles N (or ) starting from N = 3. Certainly, for studying a variety of properties, unlike
obtaining Maxwellian distribution, the choice of a small N can prove utterly meaningless. Thus, the choice
of N is based not on the fundamental requirement of adherence to statistical laws, but is dictated by the
size of the system characteristic of the problem to be explored; i.e., it is guided by specific physical con�
siderations. At the same time, the increase in N enhances the wealth of properties and processes arising in
the system. Accordingly, their investigation calls for an increasing variety of instruments.

The selection of the value of N (or MD size of cell L) which would be the minimum allowable for the
posed problem is determined by the scale of the space and time correlations and inhomogeneities charac�
teristic of this problem. Let us consider these aspects in greater detail.

Space constraints. If we calculate a pair correlation function  then  where n is the concen�
tration of particles and  is the studied range of distances. The quantity  may correspond both to the dis�
tance to the first or some subsequent maximum or minimum, and to the region where  asymptotically
tends to unity.

The correlation radii  are determined not only by g(r) but also by other space characteristics, as there is a
hierarchy of correlations  <  <  <… in the system, which corresponds to the hierarchy  <  <  < …

where  When choosing the value of N, we thereby cut the series of correlations to be studied in

this MD calculation. The choice  limits the wavelengths  of the equilibrium fluctuations;
i.e., it fixes the range of wave vectors for which we can calculate the variance in density fluctuations, such
as phonons in condensed media and plasma waves in collisional plasma.

For long�range potentials, in particular the Coulomb potential, the contribution of particle interac�
tions  at distances greater than L must be small compared to the interaction energy U. Other�
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wise, nonphysical correlations can emerge in the system induced by PBC. N must be increased until its
value reaches  

Time constraints. Alongside the hierarchy  there is a hierarchy of correlation times  <  <  < …. The

choice of L cuts this series by two inequalities, i.e.,  where D is the diffusion coefficient and
 where  is the sound velocity. The limitations imposed by the second inequality were identified

in [131] for the velocity autocorrelation function calculated at different N and one and the same density
for the system of hard spheres.

In the transition to relaxation processes, there are additional spatial and temporal characteristic scales
and the corresponding requirements for N. The choice of N limits the range of the investigated character�
istics for such cooperative phenomena as dislocations, and cracking.

The general conclusion is that the choice of the system size (number of particles) restricts the limiting
values    etc., and, consequently, the range of phenomena and processes that can be studied.

When MDM is applied using parallel computations on modern supercomputers, the time spent on the
data exchange between computing nodes (cores and processors) is much smaller than the computation
time within a single node. Initially, therefore, the performance increases almost proportionally to the
number of nodes used, then the performance reaches its maximum and begins to decrease with the further
increase in the number of nodes. M nodes is the optimal number of nodes, at which the performance is
close to the maximum. The value of M depends on the architecture of the computed cluster or supercom�
puter and N, i.e., the studied property or process in the investigated system [143].

3.3. Probabilistic Nature of Classical Statistics

In the literature, it is still a matter of debate whether the findings and predictions about the behavior of
macroscopic bodies based on statistics are of a probabilistic nature. The statistics might be different from
classical mechanics, the conclusions of which are quite unique. MDM results made it possible to show
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that the probabilistic character of the results obtained by classical statistics lies in the very nature of the
objects it studied; i.e., statistics are really fundamentally different from classical mechanics.

In the study of equilibrium systems, the cause of the above is the fact that the averaging time is much

longer than  The results of classical statistics are obtained on the basis of a much smaller amount of data
than would be necessary for a full mechanical description. The data integrity required for the latter is

essentially lost as the dynamics are developed for times longer than 
The emergence of the probabilistic nature of the relaxation processes is illustrated below by an example

of the decay of a superheated crystal. MDM allows us to study the decay of metastable states of condensed
phases as close to the limit of stability as possible for their lifetime to be within the computational capa�
bilities. First we must obtain the ensemble of initial states of the superheated crystal. Consider an example
of this procedure [102]. Modeling begins with an equilibrium crystal at a temperature below the melting
point. With further isochoric heating up to the required superheat artificial constraints on the movement
of atoms are introduced, which prevent the disintegration of the lattice: each atom is surrounded by the
Wigner–Seitz or sphere with reflecting walls. The system with these restrictions is brought to the equilib�
rium MD trajectory. Then, the ensemble of M independent points of this trajectory is used as an ensemble
of initial conditions for the MD trajectories with no restrictions on the movement of particles.

Each of the M obtained trajectories gives its lifetime τ of the metastable state, as shown in Fig. 12. There
is no correlation between the lifetimes of neighboring points because the initial states were selected as

independent and the values of τ exceed the dynamic memory time  This implies that the values of τ must
be random, which is confirmed by the fact that the set of the values of τ forms an exponentially decaying
distribution  (Fig. 13). Moreover,  coincides with the average lifetime obtained by averaging
the times τ of individual trajectories. Thus, the decay of metastable states appears to be a Poisson random
process. The mean time  is stable and is a characteristic of the metastable state and the selected volume

V. The quantity  is physical—it is the rate of homogeneous nucleation.
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Irreversibility in statistics based on the MDM equations occurs at the level of individual particle trajec�
tories for systems of three and more particles (or two particles in a closed volume). The irreversibility of
particle trajectories enables us to understand how dissipative processes arise in MDM. Indeed, Newton’s
equations do not contain any dissipation. At the same time, it is well known that MDM is an excellent tool
for studying a wide variety of dissipative processes from thermal conductivity and viscosity to plastic defor�
mation. The whole point is that the equations of motion corresponding to the particle trajectories
obtained in MDM, are characterized by such additional terms which allow us to describe dissipation.

3.4. Quantum Origin of Stochasticity and Irreversibility Characterizing Trajectories
of Particles of Real Substances 

The description of a substance which is actually implemented in MDM can be compared with real sys�

tems, since there are physical factors that lead to finite  in real systems as well [118–121, 66, 144, 65].
Among such factors, we can name random effects in the interaction with a macroscopic system (thermo�
stat). Errors of the numerical scheme in MDM qualitatively (but not quantitatively) correspond to such
effects. Their value, however, does not play a significant role due to the logarithmic dependence of the

value of  on the noise amplitude, and even a small trigger is sufficient to start mixing by the mechanism
of the exponential instability.

We should, however, recall the view that the irreversibility must also arise in a completely isolated sys�
tem when there is no thermostat [28, 57–59]. These authors saw the only way out in quantum mechanics.
This viewpoint can be connected with the results of the classical MDM if we assume that the errors of the
numerical procedure in the MDM qualitatively simulate the small but always finite quantum uncertainty
inherent in any system that is considered a classical one. The quantitative agreement is not so important
due to the logarithmic dependence of the dynamic memory time on the noise amplitude.

A rigorous consideration, especially with a decreasing temperature where the role of quantum effects
is growing, requires the preservation of the lower corrections for  in the transition from the quantum to
the classical description of the particles dynamics. In [65, 66, 144] the concept of quasi�classical trajecto�
ries is introduced and an attempt is made to obtain the equations of motion in the quasi�classical approx�
imation 

(30)

where  and  are δ�correlated random functions of unit capacity. The corrections for Planck’s constant

were of the order  The random origins  and  take into account the spreading of wave packets and

diffraction during elastic scattering. In [66, 143, 65] not all the lower corrections for  were calculated.
Apparently, the result has been over estimated and we do not present here the specific form of the tensor
functions  and  In (30), the terms that could provide the constancy of the average total energy are
also absent. The role of the weak inelastic processes was also noted by M. Gertsenshtein and Yu. Kravtsov
[121], who considered the trajectory perturbation under the action of a thermal electromagnetic field and
of spontaneous emission of low�frequency photons [118].

The approach of [65, 66, 118, 121, 143] dates back to Landau’s hypothesis assuming that although the
Schroedinger equation is symmetric with respect to time sign reversal, actually quantum mechanics essen�
tially contain the nonequivalence of both time directions. The deep irreversibility in quantum mechanics
is inherent in the measurement process [58, 62], which is probabilistic in nature. The measurement pro�
cedure is used in [66, 143, 65]. Equations (30) are incomplete and are presented in order to explain the
problem of obtaining semiclassical equations of motion and their probabilistic character. We can assume

that due to the logarithmic dependence  on the noise level, quantum uncertainty will lead to the values

 for a real dense system of atoms in the area studied in the present work.

In the quasi�classical approximation, from a certain point  of the system’s phase space, there

emanates not a single classical trajectory but a bundle of trajectories, expanding at a rate of  Only the
starting conditions of the divergence depend on Planck’s constant, i.e., A, B, and  (see (17) and Fig. 2).
Under the time reversal  at the time instant  and point  a new
bundle of phase trajectories emanates. The system will return to the initial point  with a certain
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probability  which decreases exponentially with increasing  for   The values of

 can be found after obtaining quasi�classical corrections for Newton’s equation.

For complex potential reliefs  in (3), for instance, for polymers and biomolecules there arise new
factors that lead to irreversibility.

In [144], a simple model of a chemical reaction is considered with a single reactant valley and two
product valleys, i.e., with the topology containing a bifurcation point in the transition state area. It was
shown that within the numerical solution of the corresponding mechanical model under the influence of
random factors   (or z) introduced in (27) and (28) and analogous to the quantum uncertainty in (30),
the system may behave either in a reversible or irreversible manner. In a more complex case, the trajec�
tory’s reversibility can be absent not only in the classical but also in the general sense; i.e., the reactants of
the direct reaction can differ from the products of the reverse reaction due to the departure of the reverse
trajectory to the valley of the potential relief  different from the original one.

At the intersection of the potential surfaces, the adiabatic approximation is violated. In this case, there
arise quantum points of bifurcation when in the vicinity of the intersection the notion of a trajectory loses
its sense and the situation calls for consideration in the spirit of the Landau–Zener model and fem�
tochemistry approaches.

Both the classical and quantum bifurcations impose additional restrictions on dynamic memory time
by the transit time along the trajectory of the distance between two successive bifurcations.

The set of quantum effects can lead, in particular, to a violation of the principle of detailed equilibrium
and the irreversibility of chemical and biochemical reactions, the dynamics of which take place at the
complex potential reliefs with the points of the classical and quantum bifurcations. We imply both long
sequences of processes as well as separate (elementary) stages.

3.5. Inequality, Providing Nonequivalence of Both Time Directions

According to Landau [58] “Quantum mechanics does in fact involve an important nonequivalence of the
two directions of time. This appears in connection with the interaction of a quantum object with a system which
with sufficient accuracy obeys the laws of classical mechanics, a process of fundamental significance in quan�
tum mechanics. If two interactions A and B with a given quantum object occur in succession, then the statement
that the probability of any particular result of process B is determined by the result of process A can be valid
only if process A occurred earlier than process B (see also [62]  47).” “Thus in quantum mechanics there is
a physical nonequivalence of the two directions of time, and the “macroscopic” expression of this may in fact
be the law of increase of entropy… If this is indeed the origin of the law of increase of entropy, there must exist
an inequality involving the quantum constant  which ensures the validity of the law and is satisfied in the real
world.”

To obtain such an inequality, we use the following arguments. The quantum analog of expression (22) is

(31)

where  is the quantum dynamic memory time. Due to the logarithmic character of (31), the values a and

b are, apparently, of little significance. Since the value  is much less than averaging time  under the
observation of the thermodynamical and transport properties of equilibrium systems, the inequality can
be written as 

(32)

CONCLUSIONS

The molecular dynamics method was intended to determine the trajectories of interacting particles
from the solution of the system of Newton’s equations. It was implied that the theorem of existence and
uniqueness of Cauchy problem was satisfied. However, the set of particle trajectories, which is actually cal�
culated in MDM, is different. The analysis of these issues and the consequent effects were performed in
the present study.

We analyzed the relationship between the dynamic and stochastic properties of the trajectories of par�
ticles due to the Lyapunov instability of Newton’s equations and scheme and round�off errors of the

numerical integration. The notion of the dynamic memory time (or predictability)  for the particle tra�
jectories was considered. MDM approximately retains Newtonian dynamics only for times shorter than
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 and further trajectories diverge. A bundle of trajectories on a Newton “stem” is formed instead of the
unique solution of the Cauchy problem. The proposed approach allows us to check the degree of preser�
vation of the dynamic properties of the trajectories in the modified MDM versions as illustrated by the
examples of the Langevin and Berendsen thermostats.

The particle trajectories calculated in MDM correspond to the equations of motion, which differ from
Newton’s equations by small terms. These terms are stochastic in nature and, therefore, the particle sys�
tems considered in MDM are not Hamiltonian. Instead of a microcanonical ensemble, in MDM there
arises an ensemble  where  is the fluctuation of the total energy E along the MD trajectory.
Such an ensemble had been introduced earlier in ergodic theory.

MDM results contain all the basic concepts of statistical physics, such as irreversibility and transition
to the statistical description, and for equilibrium systems they include the Gibbs distribution and equality
of the time and space averages. From the analysis of the method for obtaining these results significant con�
clusions can be drawn. It is impossible to solve the system of Newton’s equation during the time required

for averaging in statistical physics, since  is much less than these times. Since Lyapunov’s instability
occurs in systems of three and more particles, the study of specific statistical laws can be started from three
particles. The probabilistic character of the results of classical statistics is inherent in the very nature of the
objects studied by it. From the probabilistic character there immediately follows irreversibility, which
occurs at the level of the trajectories of individual particles.

Representations developed in MDM, give an adequate and internally self�consistent description of real
materials and can be extrapolated to real systems because there are physical factors that lead to the finite

values of  For starting mixing by the mechanism of the exponential instability even a small trigger is suf�

ficient. Its magnitude, at the same time, is of little significance due to the logarithmic dependence of 
on the noise amplitude. The inequality is proposed containing the quantum constant  providing the
validity of the law of an increase in entropy and holding true in the real world.

From the obtained solutions of the fundamental problems, there follow standard requirements to be
met by the MD calculations for specific problems, both in studying systems brought into equilibrium and
in exploring relaxation. The choice of the number of particles  is determined by physical factors, such
as the dimensions of the system characteristic of the space and time scales of the problem to be studied.
The selection of N, in turn, determines the optimal number of processing cores (CPUs), the excess of
which is impractical for parallel computing. The accuracy of averaging in an equilibrium MD is not worse

than  where  is the length of the MD trajectory. Thus, by improving the numerical integration

accuracy, we increase  but reduce the accuracy of the averaging if we retain the same value of  For
relaxation processes, averaging is performed over an ensemble of statistically independent microscopic
initial states that are equivalent to each other macroscopically.
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