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Abstract

The concept of dynamical memory timetm is discussed. The relation betweentm, fluctuation of energy�E andK-entropy
(Lyapunov exponent) is treated. The meaning oftm for real systems is related to the thermal and Langevin noise and quantum
uncertainty. Relaxation of kinetic energy to equilibrium state was studied by MDM for non-equilibrium strongly coupled
plasmas. Violation of the microscopic reversibility principle in some enzymatic reactions is discussed. 2002 Elsevier Science
B.V. All rights reserved.
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The molecular dynamics method (MDM) is usually
called a dynamic method whereas the Monte Carlo
method is referred to as a stochastic method of mole-
cular simulation. The objective of the present paper is
to show that MDM possesses both dynamic and sto-
chastic features. Moreover, if MDM had no hidden
stochastic features MDM would not probably be able
to achieve well-known successful results. Another ob-
jective is to present examples of MDM simulation of
non-equilibrium relaxation when stochastic features
influence the dynamics. The topic is related to the oc-
currence of irreversibility in the case of the classical
molecular systems, which has been discussing since
the Boltzmann–Zermelo debate [1–3].
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1. Divergence of trajectories in MDM

The idea of MDM is very simple: all possible
classical systems and media are simulated by a set
of N moving atoms and/or molecules, which interact
with each other (e.g., see [4–11]). The numerical
integration of the corresponding system of Newton
equations

mi
dvi (t)

dt
= Fi

[
r(t)

]
,

dri (t)
dt

= vi (t) (1)

results in the determination of the trajectories of
all particles {r,v}. Here,mi,vi , ri , and Fi are the
mass, velocity, and coordinate of theith particle and
the force acting on this particle, respectively (i =
1, . . . ,N ); the vi and ri values explicitly depend
only on time t ; Fi depends only on the coordinates
of particles; r(t) is the set of the coordinates of
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all particles,r(t) = {r1(t), r2(t), . . . , rN(t)}; v(t) is
defined similarly; and

Fi = − ∂

∂ri(t)
U(r1, r2, . . . , rN), (2)

whereU is the potential energy. FunctionU (forcesF)
is assumed to be given in MDM. The total energyE of
the system is the sum of the kineticEkin and potential
U energies,

E =Ekin +U, Ekin =
N∑

i=1

mv2
i

2
. (3)

Set (1) is exponentially unstable for a system of more
than two particles (e.g., see [3–16]). The parameter
that determines the degree of instability, that is, the
rate of divergence of initially close phase trajectories,
is the averaged Lyapunov exponent orK-entropyK. It
can be determined in several ways. For a givenU func-
tion and particles of the same massm and for identical
initial conditions corresponding to thekth point on an
equilibrium molecular-dynamical trajectory, solutions
{r(t),v(t)} to system (1) are found in steps�t and
trajectories{r′(t),v′(t)} are calculated in steps�t ′.
Averaged differences of the coordinates (velocities) of
the first and second trajectories are determined at co-
inciding time moments,

〈
�v2(t)

〉 = 1

NI

N,I∑

j,k

(
vjk(t)− v′jk(t)

)2
, (4)

〈
�r2(t)

〉 = 1

NI

N,I∑

j,k

(
rjk(t)− r ′jk(t)

)2
. (5)

To improve accuracy, averaging overk = 1, . . . , I
is also performed. In some transient timetl the
differences begin to increase exponentially with the
same value ofK,
〈
�v2(t)

〉 =Aexp(Kt),
〈
�r2(t)

〉 = B exp(Kt) (6)

at tl < t < tm. The calculated data for Lennard-Jones
system is given in Fig. 1. The values ofA and B
are determined by the difference of�t and�t ′. The
exponential increase of〈�v2(t)〉 is limited by the
finite value of the thermal velocity of particlesvT .
Thus after the timet ′m
t ′m ≈K−1 ln(6kT /Am), (7)

Fig. 1. Normalized averaged differences of (squares) velocities
and (triangles) coordinates at coinciding time moments along two
trajectories calculated for identical initial conditions with time steps
�t = 0.001 and�t ′ = 0.0001; L is the main cell edge length,
N = 64,n= 0.5, T /k = 0.44. Number densityn, temperatureT /k
and timet are given in reduced Lennard–Jones units.

whereT is the temperature, saturation is reached
〈
�v2(t)

〉 = 2
〈
v2
T

〉 = 6kT /m, (8)
〈
�r2(t)

〉 = 6D
(
t − t ′m

) + 〈
�r2

(
t ′m

)〉
(9)

for t > t ′m, where D is the diffusion coefficient.
Estimates show that〈�r2(t ′m)〉 is about the mean path
of particles between collisions(

√
2nσ)−1.

2. Dynamical memory time

Although the calculations [14] showed that the
dependence oft ′m on �t ′ at fixed�t is rather weak
we applied the following procedure to determinethe
dynamical memory time tm. The values oft ′m are
calculated at the same�t value and different�t ′
values of�t/2,�t/5,�t/10, etc. The limiting value
of t ′m when�t ′/�t → 0 is the dynamical memory
time tm for a given system and the selected numerical
integration step�t [14,15].

The physical sense of timetm consists in the fol-
lowing. During numerical integration after the time
tm the molecular-dynamical trajectory calculated with
time step�t completely “forgets” its initial condi-
tions. This means that the MD-trajectory ceases to cor-
relate with the hypothetical Newtonian trajectory (an
exact solution of set (1)). In other words, the value of
tm determines the time interval during which the be-
havior of the molecular-dynamical system can be pre-
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Fig. 2. Calculated dependence ofKtm value on the relative fluc-
tuations of the system’s total energy�E/E for two different
many-particle systems and Euler (2nd order) and Runge–Kutta (4th
order) numerical schemes.

dicted from initial conditions and deterministic equa-
tions of motion at a certain level of accuracy defined
by the�t value and a particular scheme of numerical
integration. Such a definition oftm correlates with that
given in [17,18].

The calculated dependencies ofKtm on the integra-
tion step�t can be presented in the form

Ktm = −p ln(�t)+ const, (10)

wherep is determined by the accuracy order of the
numerical integration scheme, or, in another form,

K(tm1 − tm2)= p ln(�t2/�t1), (11)

where tm1 and tm2 are the dynamical memory times
for the steps�t1 and�t2, respectively. This result
does not depend on either temperature, density, or the
system under study [14,15].

Because of the approximate character of numerical
integration, energyE [Eq. (3)] is constant only on
average. TheE value fluctuates about the average
value from step to step, and the trajectory obtained in
molecular dynamics simulations does not lie on the
surfaceE = const, in contrast to exact solutions to
Newton equations (1). This trajectory is situated in
some layer of thickness�E > 0 near the surfaceE =
const [7,8]. The value〈�E2〉 ∼ �tp depends on the
accuracy and the scheme of numerical integration [7,
8,19–22]. Therefore

Ktm = − ln
(〈�E2〉) + const. (12)

Eq. (12) relates theK-entropy and the dynamical
memory time to the noise level in the dynamical
system (Fig. 2).

It follows from (10)–(12) thattm grows no faster
than logarithmically as the accuracy of numerical in-
tegration increases. The available computation facili-
ties allow�E to be decreased by 5 orders of magni-
tude even with the use of refined numerical schemes
[20–22]. This would only increasetm two times. It
means thattm is much less than the usual MDM run.
So MDM is a method which retains Newtonian dy-
namics only at times less thantm and carries out a
statistical averaging over initial conditions along the
trajectory run.

TheK-values were calculated by MDM for sys-
tems of neutral particles [3,7–12,23,24], two-compo-
nent [15] and one-component [16] plasmas and the
primitive polymer model [25]. Estimates of dynami-
cal memory times showed that, e.g., in Ar fluid [14],
tm lies in the picosecond range. The values ofK turn
out to be the same for both velocities and coordinates
deviations. It is also seen that theK-values for elec-
trons and ions are close to each other at the initial
stage of divergence. Att = tme the quantity〈�v2(t)〉
for electrons reaches its saturation value and, there-
fore, at t > tme only ion trajectories continue to di-
verge exponentially with another value ofK-entropy
depending on the electron-ion mass ratioM/m as
Ki ∼ (M/m)−1/2. The dependence oftmi on M/m
also fits the same square root law, whiletme is inde-
pendent ofM [15].

A system of 10 polymer molecules with atom-atom
interaction potential and periodic boundary conditions
was studied in [25]. Each model molecule consisted
of 6 atoms with constant interatomic distances and
variable anglesφ between links. The divergence of
velocities�v2(t) and coordinates�r2(t) for both
atoms and molecule center-of-masses as well as angles
�φ2(t) was calculated. All the five dependencies
follow the exponential law before saturation. All the
five exponents turned out to be equal to each other, as
for electrons and ions in plasmas. One can expect that
this is a general conclusion for systems with different
degrees of freedom.

Kravtsov et al. [17,18] considered the measuring
noise, fluctuation forces and uncertainty in knowledge
of differential deterministic equations of the system
as the reasons whytm has a finite value. It is a
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characteristic of a simulation model in [7,14–16].
The time tm might be related to the concept of a
quasi-classical trajectory, which takes into account
small but finite quantum effects in classical systems:
broadening of particle wave packets and diffraction
effects at scattering [14,15,26,27], to weak inelastic
processes [18].

Our premise coincides with Karl Popper’s con-
viction foundation stone that “nontrivial probabilistic
conclusions can only be derived (and thus explained)
with the help of probabilistic premises” [28]. The
probabilistic premise we use consists in the fact that
any motion which is used to be considered as a de-
terministic classical actually has quantum nature. The
idea was inspired by an old remark of John von Neu-
mann [29] and Landau [30] that any irreversibility is
related to the probabilistic character of measurement
procedure in quantum mechanics.

Estimates of dynamical memory times were ob-
tained for molecular dynamics numerical schemes.
Sincetm values very weakly (logarithmically) depend
on the noise level, it allowed us to extend qualitative
conclusions to real systems of atoms.

Though the primary source of the stochastic noise
is the probabilistic character of the measurement
procedure there are other factors which remarkably
increase the noise value and permit us to forget about
quantum uncertainty at simulation. For example, it
is the water molecule background that creates the
stochastic noise in electrolytes. One is able to add
Langevin forces into (1) and apply MDM to study
their influence on the dynamic properties of Coulomb
systems. Calculations [31] showed that collisions of
ions with water molecules does not change essentially
the value oftm.

3. Boltzmann and non-Boltzmann relaxation

The molecular chaos hypothesis is a basis of
the kinetic theory, i.e. it is implied that molecule
motion is stochastized. However, it is apparent that
dynamic motion precedes stochastic processes [13,
32,33]. It is implied that dynamic motion governed
by intermolecular interactions defines the values of
collision cross-sections but does not influence the time
dependence of kinetic processes. One can expect that
the Boltzmann description of kinetic processes is valid

only for the times greater thantm. MDM can be a
powerful tool for studying non-Boltzmann relaxation
phenomena in more or less dense media. Some non-
equilibrium processes have already been studied with
MDM, for example, in [14,23,34–38].

MDM was applied in [39] to the study of electron
and ion kinetic energy relaxation in strongly coupled
plasmas. A two-component fully ionized system of
2N single-charged particles with massesm (electrons)
andM (ions) was considered. It is assumed that the
particles of the same charge interact via the Coulomb
potential, whereas the interaction between particles
with different charges was described by the effective
pair potential (“pseudo-potential”). The nonideality
was characterized by a parameterγ = e2n−1/3/kT ,
where n = ne + ni is the total density of charged
particles. The values ofγ were taken in the interval
from 0.2 to 3. The details of the plasma model and the
numerical integration scheme are presented in [15].

The following procedure was used to prepare the
ensemble of non-equilibrium plasma states. An equi-
librium trajectory was generated by MD for a given
value ofγ . Then a set ofI = 50–200 statistically in-
dependent configurations was taken from this run with
the velocities of electrons and ions dropped to zero.
Thus, the ensemble of initial states of non-equilibrium
plasma was obtained. MD simulations were carried
out for each of these initial states and the results were
averaged over the ensemble.

MD simulations [39] revealed a Boltzmann char-
acter for timet > 5τe. The difference between the
electron and ion kinetic energies follows an exponen-
tial decay law. The character of this long time re-
laxation agrees qualitatively with earlier results [34,
36]. At the times less than 0.1τe both the electron
and the ion kinetic energies increase according to the
quadratic fit. Then the electron kinetic energy passes
through the maximum and undergoes several oscilla-
tions damping att ≈ tm while the ion kinetic energy
increases monotonously. The relative importance of
the non-Boltzmann relaxation stage decreases with the
decrease of plasma nonideality. The oscillatory char-
acter of non-Boltzmann relaxation vanishes when the
nonideality parameter is less thanγ = 0.5. The possi-
bility of two stages of relaxation was noted in [36].

Another example of a particular relaxation process
is related to the arising of irreversibility in the case of
enzyme catalysis. The microscopic reversibility prin-
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Fig. 3. An example of irreversible behavior in the simple 2D-system
that motion is disturbed by random noise (picture of motion on the
surface of potential energy).

ciple is a fundamental principle of physical and chem-
ical kinetics. However, Vinogradov [40] obtained ex-
perimental evidence for different pathways for direct
and reverse enzymatic reactions in the case of hydroly-
sis and synthesis of ATP and some other mitochondrial
molecular machines and supposed that “the one-way
traffic” principle was realized at the level of a single
enzyme.

If there are two pathways along the hyper-surface
of potential energy between initial and final states
there should be at least two bifurcation points: in the
first of them (during the direct reaction)nearly always
the system chooses one path and in the second (during
the reverse reaction)nearly always chooses another.
We suppose that this “nearly always” condition can
be realized in the case of specific asymmetry of the
potential relief in the vicinity of the bifurcation point.
It is not a Maxwell demon but Lyapunov instability,
stochastic terms and a complicated potential relief
with a developed system of relatively hard valence
bonds that define the local choice of the reaction
pathway in the bifurcation point [41]. In the case
of enzymatic reactions the physical sense of the
stochastic terms is related to thermal fluctuations of
the potential relief and noise produced by collisions
with water molecules while the main features of the
relief do not depend on time essentially.

The molecular simulation example [42] of a primi-
tive model confirms this conclusion (Fig. 3). The local
choice is determined by the local parameters. The situ-
ation is equivalent to the statement that there is no ther-
modynamic equilibrium in the area around the bifur-
cation point and the transient state theory is not valid
here.

Recent results of molecular simulations [43] con-
firm the introduced thesis that thermal fluctuations are
able to result in completely different pathways of par-
ticular biochemical processes.
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