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1. INTRODUCTION

The measurements of the reflectance and theoreti�
cal analysis of the measurement results are widely used
methods for investigating the phase diagrams of vari�
ous substances [1–9]. In this study, we consider shock�
compressed xenon plasma. The reflectance from
shock�compressed xenon was obtained for wave�
lengths λ = 1064, 694, and 532 nm in unique experi�
ments [10–13] in which plasma was generated by
dynamic compression of xenon gas by a high�power
shock wave. To this end, the authors used a method of
high�speed collision of a metal striker accelerated to
velocity of 6 km/s with a gas cuvette followed by irre�
versible heating of the gas at the front of the shock
wave. To create a plane configuration of a shock�wave
front in the gas, the authors used a modified square�
wave oscillator. The plasma density is varied by varying
the initial gas pressure. The initial parameters of xenon
gas are as follows: pressure P0 = 1.0–5.7 MPa, density
ρ0 = 0.06–0.80 g/cm3, and temperature T = 270 K.
The parameters of the plasma created by shock com�
pression are as follows: pressure P = 1.6–17 GPa, den�
sity ρ0 = 0.5–4.0 g/cm3, and temperature T =
30000 K. The reflectance is determined from the sig�
nals of photocells that detect the reflected radiation
and a signal from a photocell that detects a probing
pulse. A satisfactory theoretical explanation of the
results obtained has not been found as yet.

Figure 1 demonstrates the reflectance as a function
of charge density in xenon plasma: the case of colli�
sionless plasma with cutoff at the plasma frequency,
the experimental data of [10] (the values of ne corre�
spond to the estimates obtained in [10]), and the

approximation of the measurement results by the
Drude formula [14].

The main goal of the experiment in [10] was to
evaluate the density of free charge carriers and the
plasma frequency for shock�compressed xenon on the
basis of the measurement of the reflectance as a func�

STATISTICAL, NONLINEAR,
AND SOFT MATTER PHYSICS

First�Principles Calculation of the Reflectance
of Shock�Compressed Xenon

G. E. Normana,b, I. M. Saitova*, and V. V. Stegailova,b,c

a Institute of High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 125412 Russia
b Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700 Russia

c National Research University Higher School of Economics, Moscow, 101000 Russia
*e�mail: saitovilnur@gmail.com

Received May 26, 2014; in final form, November 11, 2014

Abstract—Within electron density functional theory (DFT), the reflectance of radiation from shock�com�
pressed xenon plasma is calculated. The dependence of the reflectance on the frequency of the incident radi�
ation and on the plasma density is considered. The Fresnel formula is used. The expression for the longitudi�
nal dielectric tensor in the long�wavelength limit is used to calculate the imaginary part of the dielectric func�
tion (DF). The real part of the DF is determined by the Kramers–Kronig transformation. The results are
compared with experimental data. An approach is proposed to estimate the plasma frequency in shock�com�
pressed xenon.

DOI: 10.1134/S1063776115040135

R

ne, cm−3
1021 1022

100

10−1

Fig. 1. Reflectance as a function of electron density ne.
Solid curve corresponds to the case of collisionless plasma
with cutoff at the plasma frequency. Triangles denote the
results of experiment from [10]. The dashed curve corre�
sponds to the approximation of the experimental results
with the use of the Drude model with the collision fre�
quency in the Born approximation [14]. The wavelength is
1064 nm.
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tion of density. It was assumed that the profile of the
reflectance vs. density is similar to that in the case of
collisionless plasma (solid line in Fig. 1). Then the
dependence of the dielectric function (DF) on fre�

quency would have the form ε(ω) = 1 – /ω2. In this
case, if ωp > ω, then total internal reflection occurs,
and R = 1.

However, the measured dependence of the reflec�
tance on density (the triangles in Fig. 1) has no cutoff
at the plasma frequency and slowly increases with den�
sity. An attempt to take into account the collision fre�
quency in the Born approximation within the Drude
model [14] (the dashed line in Fig. 1) did not give a
satisfactory description of the experimental results
either.

Further attempts to explain the results of measure�
ments within the Drude model were based on the
assumption of the broadening of the wave front [14–
16]. In spite of the improved agreement with experi�
ment, this approach did not allow one to establish a
one�to�one correspondence between reflectance and
the free charge density. At present, the suggested
widths of the wave front also lack independent experi�
mental confirmation.

Shock�compressed xenon plasma represents an
example of warm dense matter, the theoretical
description of which requires irregular methods (see,
for example, [17–21]). One of effective methods for
the first�principles study of the properties of warm
dense matter is the electron density functional theory
(DFT) method [22–24]. The fundamental character
of this method allows its application to the study of a
wide range of phenomena (see, for example, [25–28])
and, in particular, to the calculation of the DF of var�
ious substances [4, 6, 8, 9, 29–34].

In [29], to calculate the reflectance from xenon
plasma, Desjarlais applied a quantum method of
molecular dynamics within DFT for finite tempera�
tures, which is based on the formulation of DFT given
in [35]. To calculate the components of the DF, the
author used an expression for the transverse compo�
nent of the DF—the Kubo–Greenwood formula [36,
37]—and the Kramers–Kronig transformation. The
results obtained in [29] are in better agreement with
experiment [10] compared with the data calculated
within the Drude model. Nevertheless, the reflectance
obtained in [29] is appreciably greater than the mea�
surement data of [10] at low densities. The introduc�
tion of corrections that increase the energy gap width
between bound and free states improves the agreement
between the results of [29] and [10] at low densities but
leads to underestimated values of the reflectance at
high densities.

The approach used in this paper is largely similar to
that applied in [29]; however, our approach suggests
using the longitudinal expression for the imaginary
part of the DF, which is more accurate within DFT. In
Section 2, we present the basic formulas for calculat�

ωp
2

ing the DF and the reflectance. For the imaginary part
of the DF, we compare expressions for different com�
ponents of the dielectric tensor. In Section 3, we con�
sider a method for calculating the reflectance within
DFT on the basis of the formulas given in Section 2. As
a test calculation, we present the reflectance as a func�
tion of density calculated with the use of the Kubo–
Greenwood formula for the imaginary part of the DF
and compared with the results of [29]. Section 4 dis�
cusses the applicability of the term “free electrons” in
the case of a dense plasma. We propose a method for
calculating the plasma frequency within the DFT
approach and present the results of calculation of this
parameter as a function of density. We also calculate
the effective concentrations of free electrons for differ�
ent plasma densities. In Section 5, we present the main
results: the reflectance as a function of density for dif�
ferent wavelengths of the incident radiation, calcu�
lated with the use of the expression for the longitudinal
component of the DF. We also present an analysis of
the convergence and an accuracy estimate for the
results obtained. Section 6 is devoted to the discussion
of the results. We compare the results of calculation
obtained in the present paper with the results of [29].

2. BASIC RELATIONS

The calculations of the DF and the reflectance of a
laser radiation from shock�compressed xenon are car�
ried out within DFT. Among 54 electrons of a xenon
atom, 46 electrons situated on the inner shells are con�
sidered by the pseudopotential of projected aug�
mented waves [38]. For 8 electrons on the outer shell
(with a principal quantum number of 5), a system of
Kohn–Sham equations is solved with a pseudopoten�
tial that effectively takes into account the field of the
remaining 46 electrons.

Pseudopotentials may be either local or nonlocal.
Local potentials are diagonal, and their matrix ele�
ments can be represented as

(1)
Nonlocal potentials V(r, r') are not diagonal; there�
fore, the effect of these potentials on the wave func�
tions cannot be considered as a product, and one
should calculate the integral,

(2)

Due to this property, in particular, the operator of
potential V(r, r') does not commute with the operator
of coordinate r. Thus, this approximation imposes
some constraints on the formula for the DF, which is
discussed below.

The DF is a complex quantity and can be repre�
sented as ε = ε(1) + iε(2). There exist two expressions for
the dielectric tensor depending on the character of the
external field: longitudinal and transverse.

In this study, we consider the reflection of laser
radiation from plasma. When an electromagnetic

r V r'〈 〉 V r( )δ r r'–( ).=

r V ψ〈 〉 V r r',( )ψ r'( )d
3r'.∫=
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(transverse) radiation acts on a substance, the response
function is the transverse DF; the imaginary part of
this function versus frequency ω for given temperature
and ion configuration {Ri} is given by the following
expression in the long�wavelength limit [39]:

(3)

where e is elementary charge, Ω is the volume of the
systems, and q is the wave vector of the incident radia�
tion. The summation is over all states n and n'. This
expression takes into account the contributions of
terms with both n = n' (intraband transitions) and n ≠
n' (interband transitions). The summation is over all k
points in the Brillouin zone with regard to the weight
wk of a k point. The factor of 2 in front of wk takes into
account the spin degeneracy. The result of summation
over the index α, multiplied by 1/3, is the result of
averaging over three spatial coordinates. Thus, the
assumption of isotropy of the system is taken into
account, which is justified in the case of plasma.

In formula (3),  is the velocity operator, En, k are
the eigenvalues (energy levels) corresponding to the
given wave functions, f(En, k) is the Fermi–Dirac dis�
tribution function, which determines the population
of levels, and ψn, k is a solution to the Schrödinger
(Kohn–Sham) equation. In this paper, we find a solu�
tion to the system of Kohn–Sham equations as a
superposition of plane waves; therefore, the solution
can be represented as Bloch functions, ψn, k = eik · run, k,
where un, k is the periodic part of the wave function.

The velocity operator  can be expressed in terms
of the commutator,

(4)

where H is the Hamiltonian. If the potential is local,
then, replacing  by p/m (m is the electron mass and p
is its momentum operator) in (3), we obtain the
Kubo–Greenwood formula [36, 37]:

(5)

where m is the electron mass. However, if the potential
is nonlocal, the operators of velocity and momentum
are different and are related by [40]

(6)

εT
2( ) ω Ri,( ) 1

3
��4π2e2

ω2Ω
����������� 2wk

n n' α k, , ,

∑q 0→
lim=

× f En' k q+,( ) f En k,( )–[ ]

× ψn'k v̂α ψnk〈 〉 2δ En' k q+, Enk– �ω–( ),

v̂

v̂

v̂ dr
dt
���� i

�
�� H r,[ ],= =

v̂

εT
2( ) ω( ) 1

3
��4π2e2

�
2

m2ω2Ω
��������������� 2wk

n n' α k, , ,

∑q 0→
lim=

× f En' k q+,( ) f En k,( )–[ ] un' k, ∇α ikα– un k,〈 〉 2

× δ En' k q+, En k,– �ω–( ),

v̂ p
m
��� i

�
�� V r r',( ) r,[ ].+=

Thus, in the case of a nonlocal potential, the Kubo–
Greenwood formula turns out to be inapplicable to the
calculation of the imaginary part of the DF.

In spite of the fact that the medium considered is
isotropic, the responses of the system depend on the
form of a perturbation (longitudinal or transverse) and
do not coincide in the general case. The simplest illus�
tration of this assertion is given by the conductivity
tensor obtained in the approximation of the hydrody�
namic model of plasma [41]. However, in the long�
wavelength limit, the transverse and longitudinal com�
ponents of the dielectric tensor coincide. Let us repre�
sent the velocity operator as [39]

(7)

Substituting formula (7) into (3), we obtain an expres�
sion for the imaginary part of the DF as a function of
frequency ω for given values of temperature and ion
configuration {Ri} for a longitudinal dielectric tensor:

(8)

where e
α
 is a unit vector that defines the direction of a

Cartesian axis of the coordinate α. Formula (8) was
obtained in [42–44] in the first approximation of per�
turbation theory within the random phase approxima�
tion. Since, to obtain (8), we use a transformation of
the velocity, rather than the momentum operator, for�
mula (8) is free of the drawback of the Kubo–Green�
wood formula and can be applied for any pseudopo�
tentials. Notice that from (8) we can also obtain for�
mula (5), using the relation

(9)

which is valid only in the case of a local pseudopoten�
tial.

The real part of the DF is determined by the Kram�
ers–Kronig transformation:

(10)

where the integral is defined in the sense of the princi�
pal value in the limit as η  0. In the general case,
the response function of the system to the external
action is not the DF, but the inverse of this quantity.
Due to the causality principle, the Kramers–Kronig
relations are always valid for the inverse of the DF. In
this case, formula (10) is valid only in the limit when
the wavelength of the incident radiation is several
times greater than the characteristic size of the system,
which is the case in our case.

For the range of plasma parameters considered, the
wavelength of laser radiation is much greater than both

v̂ H iq r⋅( )exp,[ ]/� q .
q 0→
lim=

εL
2( ) ω Ri,( ) 1

3
��4π2e2

Ω
����������� 1

q 2
������ 2wk

n n' α k, , ,

∑q 0→
lim=

× f En' k q+,( ) f En k,( )–[ ] un' k e
α

q+, un k,〈 〉 2

× δ En' k q+, En k,– �ω–( ),

unk un'k q+〈 〉

q
�����������������������

q 0→
lim �

2

m
����

un'k ∇ ik–( ) unk〈 〉
En'k q+ Enk–

������������������������������������,
q 0→
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π
�� dω' ε 2( ) ω'( )ω'
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∞
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the characteristic size of an atom and the mean free
path of an electron in all three cases. However, in this
case one should consider another characteristic size,
which should be compared with the value of the wave
vector q. A transition to the long�wavelength limit
implies, in particular, that |q| � |k|, where k can be con�
sidered as the inverse lattice vector for periodic sys�
tems. In our case, the system is disordered; therefore,
one can take |k| ~ d, where d is the macroscopic size of
the system. Then the condition |q| � |k| implies that
λ � d. In this case, since the medium is an absorbing
one, one can take as d the penetration depth of the
field into the substance, because it is this depth at
which most of the reflection occurs. Then the ratio of
this parameter to the wavelength can be defined as
d/λ = n1/4πn2, where n2 and n1 are the imaginary and
real parts of the refractive index, respectively.

Note also that, in this case, the system responds to
the external action whose source is outside the system.
As the response function, one considers the DF (but
not its inverse), which is applicable only when the
wavelength is much greater than the characteristic size
of the system.

The values of the DF are determined for a fixed ion
configuration. To determine the value corresponding
to the chosen temperature and density, the DF is aver�
aged over a set of equilibrium configurations. The
reflectance is calculated by the Fresnel formula for
normal incidence:

(11)

3. METHOD OF CALCULATION

For calculations, we use the VASP package [45–
47]. As shown in the previous section, expression (5)
for the transverse dielectric tensor gives a correct result
only in the case when the pseudopotential is local. If
the pseudopotential is nonlocal (which is the case for
almost all pseudopotentials used in DFT codes), one
should use expression (8) for the longitudinal dielec�
tric tensor.

R ε 1–( )

ε 1+( )
�����������������

2

.=

In the calculations, we use the approximation of
generalized gradients for the exchange and correlation
parts of the electron density functional. We use the
Perdew–Burke–Ernzerhof (PBE) functional [48].
The wave functions, which are a solution to the set of
Kohn–Sham equations, and the corresponding
energy levels are needed to calculate the components
of the DF. A solution to this system is sought in the
form of a superposition of plane waves. The cutoff
energy of the basis of plane waves is chosen to be equal
to 180 eV.

The restriction of the volume of the system leads to
a discrete spectrum of eigenvalues. As an approxima�
tion to the δ function in formulas (5) and (8), we used
the Gauss function with a width of 0.03 eV. We also
calculated the DF for values of δ from 0.01 to 0.1 and
found that the result was not changed.

The calculations are performed for a canonical
ensemble. The ion temperature is controlled by the
Nose–Hoover thermostat [49, 50]. The equal electron
temperature is defined by the Fermi–Dirac distribu�
tion for the occupancies of states f(E). The tempera�
ture of the system is about 30000 K. The values of tem�
perature and density corresponding to the experimen�
tal conditions of [10–13], for which the calculation is
performed, as well as the values of the chemical poten�
tial (the Fermi energy) calculated within DFT for the
given parameters, are shown in the table.

The values of the DF are averaged over a set of ion
configurations. This set is determined by the quantum
molecular dynamics method. The trajectories of parti�
cles are calculated by the integration of Newton’s clas�
sical equations of motion with forces determined by
the Hellmann–Feynman theorem. Depending on the
density of particles in a computation cell, the trajecto�
ries consist of from 4000 to 10000 2�fs steps. On each
trajectory, from 5 to 10 statistically independent con�
figurations are distinguished.

We considered the range of plasma densities ρ =
0.51–3.84 g/cm3. The number of particles in a com�
putation cell was varied from 16 for the lowest density
to 128 for the highest density. The computation time of
the DF for a given particle configuration and the low�
est density was about 15 hours on the 36 core cluster
K�100. As the density increased for a given number of
particles in a computation cell, the computation time
decreased.

As mentioned in the Introduction, the reflectance
from a shock�compressed xenon plasma was computed
in [29], where the Kubo–Greenwood formula (5) was
used to determine the imaginary part of the DF. We
also carried out a calculation by the method proposed
in [29]. Figure 2 shows that our results are in a rather
good agreement with the data of [29] in spite of the
fact that we used the latest version of the exchange–
correlation PBE functional [51].

Calculation parameters (density and temperature) and cal�
culated values of the chemical potential EF

λ = 1064 nm λ = 694 nm, 532 nm

ρ, g/cm3 T, K EF, eV ρ, g/cm3 T, K EF, eV

0.51 30050 –8.26 0.53 32900 –8.84

0.97 29570 –6.5 1.1 33100 –6.8

1.46 30260 –5.37 1.6 33120 –5.5

1.98 29810 –4.2 2.2 32090 –4.08

2.7 29250 –1.75 2.8 32020 –2.96

3.84 28810 –0.92 3.4 31040 –1.84
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4. FREE ELECTRONS 
AND PLASMA FREQUENCY

Low�temperature atomic plasma consists of elec�
trons, ions, and atoms that are in the ground and
excited states. In the case of low�density plasma, elec�
trons can be conventionally divided into bound elec�
trons, which are characterized by discrete spectrum,
and free electrons with continuous spectrum. An elec�
tron in an atom can be either in the ground state or on
excited levels.

The excited levels are broadened due to the Stark
effect, and the upper levels merge together, forming a
quasi�continuous spectrum, whose beginning is deter�
mined by the Inglis–Teller formula. Moreover, a
stronger transformation of pair�excited states occurs
because the lifetime of these states decreases with
increasing excitation due to Coulomb collisions. This
lifetime vanishes even at energies below the ionization
threshold by a certain value ΔE, which may be less
than the Inglis–Teller limit. The electron states in the
interval ΔE can be referred to quasi�continuous col�
lective multiparticle states [52].

Both the Inglis–Teller limit and ΔE increase with
the charge concentration. Therefore, the distinguish�
ing of free states in the spectrum of electron states
becomes more and more conditional and approxi�
mate, which complicates the calculation of the plasma
frequency by the standard formula.

In this paper, we propose two methods for evaluat�
ing the plasma frequency on the basis of the calculated
imaginary part of the DF as a function of frequency.
The first method is based on the calculation of the

dynamic conductivity, whose real part is related to the
imaginary part of the DF by the formula σ(ω) =
ε0ωε(2)(ω), where ε0 is the permittivity of vacuum. In
the range of low frequencies, this formula for σ(ω) can
be approximated by the Drude formula [53, 54]:

(12)

The parameters of this approximation are the relax�
ation time τ and the required plasma frequency ωp.
Figure 3 demonstrates the comparison of the experi�
mental [14] and calculated values of static conductiv�
ity as a function of density. One can see that the results
of calculations are in a rather good agreement with the
experimental results.

The second method is based on the rule of sums
[55]:

(13)

Taking into account the necessity to apply numerical
methods to calculating the integral (13), consider the
following function, which depends on the upper limit
ωmax:

(14)

Expression (14) is deduced from (13) by substituting
ωmax for infinity in the upper limit of the integral (13)
and taking into account the expression for the plasma
frequency

(15)

For xenon, the number of electrons within the DFT
approach is Ne = 8N, where N is the number of heavy
particles in a computation cell with volume Ω.
Figure 4 shows the function S(ωmax) for a xenon den�
sity of ρ = 2.2 g/cm3. One can see that the function S

σ ω( )
ε0ωp

2τ

1 ω2τ2+
����������������.=

ωε 2( ) ω( ) ωd

0

∞

∫
π
2
��ωp

2
.=

S ωmax( )
2mε0Ω

πNee2
�������������� ε 2( ) ω( )ω ω.d

0

ωmax

∫=

ωp
2 Nee2

/mε0Ω.=

R

ρ, g/cm3
1
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2 3 40
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Fig. 2. Reflectance as a function of density for a wave�
length of 1064 nm. The results of calculation within DFT
with the Kubo–Greenwood formula for the imaginary part
of the DF: pentagons connected by a dashed curve repre�
sent the results of [29], and diamonds represent the results
of the present study.

σ0, 104 Ω−1 m−1

ρ, g/cm3
1

5

2 3 40

10

15

Fig. 3. Static conductivity as a function of density. Trian�
gles represent the results of measurements from [14], and
squares represent the results of calculation.
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has two stationary values: denote them as S1 and S2.
The value S2 = 1 corresponds to eight electrons, which
indicates that the calculation is correct.

The expression for the imaginary part of the DF
defined by formula (8) and appearing in (14) takes into
account all possible transitions between electron levels
within the DFT approach. These transitions can be
divided into two classes: intraband and interband tran�
sitions. Interband transitions in plasma are possible
between different discrete bound states (transitions
between states with different principal quantum num�
bers) and between bound and free states (photoioniza�
tion). Intraband transitions are possible both in the
continuous spectrum and within a bound state (transi�
tions between states with the same principal quantum
number but different orbital numbers).

The first stationary value S1 of the function S(ωmax)
is a contribution of low�frequency transitions and cor�
responds to the contribution of intraband transitions.
Thus, this value can be used to evaluate the plasma fre�
quency, defined by the intraband transitions in the
continuous spectrum, using the formula

(16)

The value of ωp thus obtained can be slightly overesti�
mated due to the contribution of intraband transitions
in the discrete spectrum. However, the analysis of the
electron density states in shock�compressed xenon
plasma has shown that the contribution of such transi�
tions is negligible for the range of densities and tem�
peratures considered.

In addition to the two above�mentioned methods,
we evaluate the plasma frequency by considering elec�
trons with energy greater than the Fermi energy EF as

ωp
2 Nee2

mΩε0

�����������S1.=

free electrons. Then the concentration ne of free
charge carriers can be calculated by the formula

(17)

where n = N/Ω is the total concentration of ions and
atoms and g(E) is the density of electron states.
Figure 5 demonstrates an example of the function g(E)
for a density of ρ = 1.1 g/cm3.

Figure 6 illustrates the results of calculation of the
plasma frequency as a function of the plasma density
for all three methods. The values of ωp obtained in the
present study almost coincide with the estimates made
in [10, 14] in the low�density region. As ρ increases, a
considerable discrepancy between the values of ωp
arises. In this case, the functions of plasma frequency
versus density calculated with the use of the Drude for�
mula obtained within the free electron model and by
formula (16) nearly coincide, which, to some degree,
is a confirmation of the fact that the first stationary
value of the function S(ωmax) determines the contribu�
tion of transitions in the spectrum of free electrons.
The values of the plasma frequency calculated by for�
mula (17) also show a rather good agreement with the
results of calculation by formula (16).

Knowing the values of the plasma frequency, one
can calculate by formula (15) the values of the effective
concentration ne of free charge carriers in plasma. Fig�
ure 7 shows ne as a function of plasma density.

The values of the concentration of free electrons
and the corresponding values of the plasma frequency
were obtained in [10, 14] within the chemical model of
plasma [56]. Here the authors used the Saha equation
with regard to the Coulomb attraction in the form of
the Debye correction and short�range repulsion in the
hard spheres approximation [57, 58]. Thus, the esti�

ne/n 2 f E( )g E( ) E,d

EF

∞

∫=

S

10 50

100

10−1

51
ωmax, eV

S2

S1

Fig. 4 Function S versus the upper limit ωmax.

g, eV−1 atom−1

−10

2

0 10 20
0

4

8

−20
E, eV

EF

6

10

Fig. 5. Electron state density for a plasma density of ρ =
1.1 g/cm3. The dashed curve is the population of levels
f(E). The arrow indicates the Fermi level.
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mates of ne and ωp obtained are related only to the
parameters of the plasma created by shock compres�
sion of xenon and in no way related to the dependence
of the reflectance on density.

In our case, the imaginary part of the DF ε(2) enters
the expressions for both the reflectance and the plasma
frequency and uniquely determines their values. Thus,
within the approach used in the present study, the cal�
culated values of the plasma frequency are consistent
and directly related to the dependence of the reflec�
tance on density. The use of the plasma frequency
instead of the concentration of free electrons is consis�
tent with the ideas of [59].

5. REFLECTANCE

5.1. Results

Figure 8 demonstrates the results of calculation of
the reflectance as a function of density for different
wavelengths of laser radiation and the experimental
data from [10–13]. The imaginary part of DF was cal�
culated with the use of formula (8).

For wavelengths of 1064 and 694 nm, the results
obtained in the present study are in agreement with
experiment both in the absolute value and in the
dependence on density in the range of ρ ≥ 1 g/cm3.
Only a single point lies out in the range of low densities
at ρ = 0.5 g/cm3. This discrepancy in the range of low
densities may be attributed, in particular, to the fact
that, for ρ = 0.5 g/cm3, the ratio of the field penetra�

tion depth d to the wavelength λ becomes approxi�
mately equal to 0.3 and increases as the density
decreases. This fact points to the restricted applicabil�
ity of the approach in the range of low densities. For
higher densities, the parameter d/λ < 0.1, which guar�
antees the applicability of this approach in the range of
ρ > 1 g/cm3.

For a wavelength of 532 nm and density of ρ =
1 g/cm3, the ratio d/λ = 0.16; this, in contrast to the
case of wavelengths of 1064 and 694 nm, points to the
restricted applicability of the long�wavelength approx�
imation at this density. For higher ρ, the ratio d/λ <
0.1, just as in the case of 1064 and 694 nm. The theo�
retical values of the reflectance for this wavelength are
slightly overestimated compared with the experimen�
tal data. However, the relative dependence of the
reflectance on density is reproduced.

The arrows in Fig. 8 indicate the values of density ρ
at which the frequency of incident radiation coincides
with the plasma frequency found in Section 4. Thus,
the calculation has shown that there is no cutoff at the
plasma frequency; this, to a certain degree, solves the
problem posed in the Introduction.

5.2. Errors

We have carried out an analysis for four parameters
of calculation: the upper limit of integration in for�
mula (10), the number of particles in a computation
cell, the number of k�points in the Brillouin zone, and
the number of ion configurations.

ωp, eV

ρ, g/cm3
1

2

2 3 40

3

4

1

5

6

λ = 532 nm →
694 nm →

1064 nm →

Fig. 6. Plasma frequency as a function of xenon plasma
density: plasma density calculated with the use of the
Drude formula (12) (closed circles), the results of calcula�
tion by formula (16) (squares), estimates of the plasma fre�
quency obtained in [10, 14] (open circles), and plasma fre�
quency calculated with the use of formula (17) for the free
charge carrier concentration (triangles). The arrows indi�
cate radiation frequencies corresponding to wavelengths of
1064, 694, and 532 nm.

ne, cm−3

2

1022

0
ρ, g/cm3

41 3

Fig. 7. Electron concentration ne as a function of plasma
density ρ: the values of ne calculated with the use of formu�
las (12) and (15) (closed circles), the results of calculation
by formulas (16) and (15) (squares), estimates of ne
obtained in [10, 14] (open circles), and the values of ne cal�
culated with the use of formula (17) (triangles).
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The analysis of the dependence of the reflectance
on the upper limit of integration in (10) has shown that
it suffices to take ωmax = 40 eV.

The analysis of the dependence of the results on the
number N of particles has shown that, for low density,
the results weakly depend on N starting from N = 16.
An increase in the number of particles leads to a
noticeable increase in the computation time. There�
fore, especially for low densities, it is important to
determine the minimum number of particles in a com�
putation cell for which the results obtained converge.

At the same time, as density increases, one should
increase the volume of the computation cell. For high
densities, the calculations were carried out for 64 par�
ticles. To check the convergence with respect to this
parameter, we also carried out calculations for
128 particles.

The values of the DF for a given density were aver�
aged over different configurations; this allowed us to
determine the relative error of a quantity obtained. As
mentioned above, the number of configurations was at
least five.

The calculated values of the reflectance shown in
Fig. 8 are obtained for one Γ point in the Brillouin
zone. To check the convergence of the results with
respect to this parameter, we carried out calculations
for various numbers of k points ranging from 1 to 64.
The analysis of the results obtained has shown that an
increase in the number of k points does not affect the
values of the reflectance at given temperatures.

Consider the effect of the computation error of the
DF components on the reflectance. The error in the
determination of the reflectance is calculated by the
standard formula

(18)

The error Δε(2) in determining the imaginary part of
the DF is the root�mean�square deviation of ε(2) when
averaging over different configurations. As the number
of configurations increases, the values of Δε(2)

decrease. The errors in determining the imaginary
Δε(2) and real Δε(1) parts of the DF are related by the
formula

(19)

where γ is the relative error in determining the imagi�
nary part of the DF, which is assumed to be indepen�
dent of frequency.

In the range of low densities, the relative error in
determining the imaginary part of the DF is maximal
and does not exceed 15%. For the minimum value of
ρ, the relative error Δε(1)/ε(1) is about 1.5%; in this
case, the ratio of derivatives is (∂R/∂ε(1))/(∂R/∂ε(2)) �
1. Thus, for low density, the imaginary part of the DF
makes a key contribution to the error in determining
the reflectance, which in this case amounts to about
30%.

As density increases to ρ = 3.84 g/cm3, the deriva�
tives of the reflectance with respect to the DF compo�
nents, as well as the relative errors ε(1) and ε(2), become
equal to each other. Thus, the imaginary and real parts
of the DF make equal contributions to ΔR. The abso�
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Fig. 8. Reflectance from shock�compressed xenon plasma
as a function of density for different wavelengths of inci�
dent radiation: experimental data from [10–13] (triangles)
and the results of calculation (squares). The arrows indi�
cate the values of density at which the plasma frequency
coincides with the frequencies of incident radiation.
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lute value of ΔR increases, while the relative error
noticeably decreases to a value of less than 5%. There�
fore, for large values of density, there is no need to
increase the accuracy of determination of the imagi�
nary part of DF.

6. DISCUSSION OF THE RESULTS

Figure 9 demonstrates the reflectance of laser radi�
ation with wavelength 1064 nm as a function of den�
sity. The solid curve corresponds to the case of colli�
sionless plasma when a cutoff on the plasma frequency
should be observed; the triangles represent experimen�
tal data of [10], and the dashed curve represents an
approximation to the experimental data of [10] with
the collision frequency in the Born approximation
[14]. These curves and symbols are analogous to those
shown in Fig. 1. The experimental data show that
there is no cutoff at the plasma frequency. The Drude
formula with nonzero collision frequency also pro�
vides no explanation to the experimental data.

In [14–16], the authors assumed that, during
shock�wave compression of xenon, the density does
not increase stepwise, but there exists a region of finite
width in which density smoothly increases to a pre�
scribed value. Thus, the wave front has a finite width,
and laser radiation is reflected not only from xenon
plasma, but also from the wave front. The width of the
front is about 1 μm, which is comparable with the
wavelength of the incident radiation. This assumption
appreciably improves the agreement with experiment
compared with the assumption of an abrupt front. Fig�
ure 9 shows that the results of approximation of exper�
imental data within a model with such a wide front
allow one to accurately describe the dependence of the
reflectance on density at a wavelength of 1064 nm
(however, at other wavelengths, the accuracy is lower).
As mentioned above, the assumption of the broaden�
ing of the front has no independent experimental con�
firmation.

The diamonds connected by a dot�and�dash curve
correspond to the results of calculation in [29]. One
can see that the results of [29] appreciably better agree
with experiment compared to the case when the
Drude formula is used. However, there is also an
appreciable discrepancy with experiment in the range
of low densities. To improve the agreement with the
experimental results of [10], Desjarlais [29] addition�
ally assumed that the energy gap between free and
bound states increases. He draws an analogy with the
spectrum of semiconductors, where the underestima�
tion of the energy band gap was observed when calcu�
lating the electron state density within DFT. As shown
in [39], these corrections appear in the expression for
the imaginary part of the DF as follows:

(20)εgap
2( ) ω( ) �ω

�ω Δ–
��������������

2

ε 2( ) ω( ),=

where Δ is a correction that increases the gap between
bound and free states. In [29], Desjarlais proposed to
artificially increase the gap by Δ = 2.5 eV. In this case,
using expression (20), one can approximately take into
account the contributions to the DF and the reflec�
tance that are not taken into account within the ran�
dom phase approximation.

The results of calculation of the reflectance with
regard to this correction are shown in Fig. 9 by circles
connected by a dot�and�dash curve. This slightly
improves the agreement between the results of calcula�
tion [29] and experimental results at low densities. In
this case, the values of the reflectance at high densities
are underestimated. The functions of the reflectance
versus density [29] with and without regard to the cor�
rection are almost parallel. Thus, the introduction of
the correction affects only the absolute values and does
not change the dependence of the reflectance on den�
sity.

Above, in Fig. 5, we demonstrated the density of
electron states for a xenon plasma density of ρ =
1.1 g/cm3 calculated within the DFT approach. One
can see that an energy gap arises between free states
(E – EF > 0) and a discrete level of E ≈ –10 eV.

In the general case, as shown in [52], the represen�
tation of an electron spectrum in dense plasma as a
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Fig. 9. Reflectance as a function of density for a wave�
length of 1064 nm: the case of collisionless plasma when a
cutoff is observed at the plasma frequency (solid heavy
curve), approximation of experimental results with the use
of the Drude model with the collision frequency in the
Born approximation [14] (dashed curve), the Drude model
with regard to the front width [14–16] (thin curve), exper�
imental data from [10] (triangles), the results of [29] (dia�
monds), the results of [29] obtained with the use of correc�
tions to the energy gap width between free and bound states
(circles), and results of the present study (squares). The
arrow indicates the value of plasma density at which the
frequency of incident radiation coincides with the plasma
frequency.
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combination of a continuous spectrum of free states
and a discrete spectrum of bound electrons separated
by an energy gap is not correct. Thus, the validity of
the corrections introduced in [29] for calculating the
properties of warm dense matter requires further anal�
ysis and refinement.

The results of [29] were obtained under the
assumption of an abrupt shock�wave front and agree
well enough with experiment. Thus, in spite of the fact
that, in the general case, the front is not ideal and has
nonzero width, the effect of the front broadening on
the reflectivity of shock�compressed xenon is obvi�
ously overestimated in [14–16], because the results of
the first�principles calculations agree with experimen�
tal data to the same degree of accuracy without invok�
ing the front broadening conjecture.

The results of calculations obtained in the present
study noticeably better (compared with [29]) agree
with experiment both in absolute value and in the
dependence on density without introducing correc�
tions to the energy gap width. The slope of the depen�
dence of the reflectance on density obtained in the
present study is appreciably greater than that given in
[29]. The absolute values given in [29] are much
greater than the results calculated in the present study
in the range of ρ < 3 g/cm3 (by a factor of eight for the
minimum value of density) and are twice the measured
values in [10]. As mentioned above, the main differ�
ence between the approach used in the present study
and the approach of [29] is the use of expression (8) for
the longitudinal component of the tensor instead of
the transverse expression (5), which gives a more cor�
rect result compared with the Kubo–Greenwood for�
mula within DFT.

In the present study, we did not consider the effect
of the actual width of the wave front in xenon. How�
ever, we cannot rule out the fact that, for the boundary
domains of the range of parameters considered, this
factor may contribute to the reflectivity of shock�com�
pressed xenon plasma, although to an appreciably
smaller degree than that supposed in [14–16].

7. CONCLUSIONS

Within density functional theory, we have calcu�
lated the reflectance from shock�compressed xenon
plasma as a function of density for different values of
wavelength. On the basis of the results obtained, we
can draw two basic conclusions.

1. The application of the expression for the longitu�
dinal dielectric tensor gives much better agreement
with experiment compared with both the Drude
model with the collision frequency in the Born
approximation and the DFT approach with the use of
a formula for the transverse component of the dielec�
tric tensor (the Kubo–Greenwood formula). We have
considered the long�wavelength limits.

2. We have proposed a method for calculating the
plasma frequency within DFT that is based on the rule

of sums. This approach allows one to derive the plasma
frequency, as well as the reflectance and the conduc�
tivity, from the same expression for the dielectric ten�
sor. Thus, the density dependences obtained for these
parameters turn out to be self�consistent and inter�
nally correlated with each other.

ACKNOWLEDGMENTS

We are grateful to V.B. Mintsev and Yu.B. Zapor�
ozhets for providing a constant supply of information
on the results of measurements, as well as to M. Des�
jarlais for useful discussions and remarks. The compu�
tations were carried out on the K�100 cluster at the
Keldysh Institute of Applied Mathematics, Russian
Academy of Sciences, and on the cluster of the Joint
Supercomputer Center, Russian Academy of Sci�
ences.

This work was supported in part by the Presidium of
the Russian Academy of Sciences within the Funda�
mental Research program No. 43 “Fundamental
Problems of Mathematical Modeling” and by the
Russian Foundation for Basic Research (project
nos. 14�08�31694�mol_a (I.M.S.) and 13�01�12070�
ofi�m). The work of V.V.S. was supported by the
National Research University Higher School of Eco�
nomics within the Fundamental Research Program.

REFERENCES

1. G. W. Collins, P. M. Celliers, D. M. Gold, L. B. Da
Silva, and R. Cauble, Contrib. Plasma Phys. 39, 13
(1999).

2. P. M. Celliers, G. W. Collins, L. B. Da Silva,
D. M. Gold, R. Cauble, R. J. Wallace, M. E. Foord,
and B. A. Hammel, Phys. Rev. Lett. 84, 5564 (2000).

3. P. Loubeyre, P. M. Celliers, D. G. Hicks, E. Henry,
A. Dewaele, J. Pasley, J. Eggert, M. Koenig, F. Occelli,
K. M. Lee, R. Jeanloz, D. Neely, A. Benuzzi�Mounaix,
D. Bradley, M. Bastea, S. Moon, and G. W. Collins,
High Pressure Res. 24, 25 (2004).

4. P. M. Kowalski, S. Mazevet, D. Saumon, and M. Chal�
lacombe, Phys. Rev. B: Condens. Matter 76, 075112
(2007).

5. P. M. Celliers, P. Loubeyre, J. H. Eggert, S. Brygoo,
R. S. McWilliams, D. G. Hicks, T. R. Boehly, R. Jean�
loz, and G. W. Collins, Phys. Rev. Lett. 104, 184503
(2010).

6. F. Soubiran, S. Mazevet, C. Winisdoerffer, and
G. Chabrier, Phys. Rev. B: Condens. Matter 86, 115102
(2012).

7. G. Huser, N. Ozaki, and T. Sano, Phys. Plasmas 20,
122703 (2013).

8. M. A. Morales, J. M. McMahon, C. Pierleoni, and
D. M. Ceperley, Phys. Rev. Lett. 110, 065702 (2013).

9. F. Soubiran, S. Mazevet, C. Winisdoerffer, and
G. Chabrier, Phys. Rev. B: Condens. Matter 87, 165114
(2013).

10. V. B. Mintsev and I. B. Zaporozhets, Contrib. Plasma
Phys. 29, 493 (1989).



904

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 120  No. 5  2015

NORMAN et al.

11. Yu. B. Zaporozhets, V. B. Mintsev, V. K. Gryaznov, and
V. E. Fortov, in Physics of Extreme States of Matter—
2002, Ed. by V. E. Fortov et al. (Institute of Problems of
Chemical Physics of the Russian Academy of Sciences,
Chernogolovka, 2002), p. 188 [in Russian].

12. Yu. B. Zaporozhets, V. B. Mintsev, V. K. Gryaznov,
V. E. Fortov, H. Reinholz, and G. Röpke, in Physics of
Extreme States of Matter—2004, Ed. by V. E. Fortov et
al. (Institute of Problems of Chemical Physics of the
Russian Academy of Sciences, Chernogolovka, 2004),
p. 140 [in Russian].

13. Y. Zaporozhets, V. Mintsev, V. Gryaznov, V. E. Fortov,
H. Reinholz, T. Raitza, and G. Röpke, J. Phys. A:
Math. Gen. 39, 4329 (2006).

14. H. Reinholz, G. Röpke, A. Wierling, V. Mintsev, and
V. Gryaznov, Contrib. Plasma Phys. 43, 3 (2003).

15. H. Reinholz, G. Röpke, I. Morozov, V. Mintsev,
Yu. Zaporogets, V. Fortov, and A. Wierling, J. Phys. A:
Math. Gen. 36, 5991 (2003).

16. H. Reinholz, Y. Zaporoghets, V. Mintsev, V. Fortov,
I. Morozov, and G. Röpke, Phys. Rev. E: Stat., Nonlin�
ear, Soft Matter Phys. 68, 036403 (2003).

17. Yu. V. Petrov and N. A. Inogamov, JETP Lett. 98 (5),
278 (2012).

18. G. E. Norman, S. V. Starikov, and V. V. Stegailov,
J. Exp. Theor. Phys. 114 (5), 792 (2012).

19. N. A. Medvedev, A. E. Volkov, K. Schwartz, and
C. Trautmann, Phys. Rev. B: Condens. Matter 87,
104103 (2013).

20. B. Rethfeld, A. Rämer, N. Brouwer, N. Medvedev, and
O. Osmani, Nucl. Instrum. Methods Phys. Res., Sect.
B 327, 78 (2014).

21. F. C. Kabeer, E. S. Zijlstra, and M. E. Garcia, Phys.
Rev. B: Condens. Matter 89, 100301 (2014).

22. W. Kohn and L. J. Sham, Phys. Rev. Sect. A 140, A1133
(1965).

23. W. Kohn, Nobel Lecture on Physics (The Nobel Foun�
dation, Stockholm, 1999).

24. P. A. Zhilyaev and V. V. Stegailov, Vychisl. Metody Pro�
gram. 13, 37 (2012).

25. N. A. Skorikov, M. A. Korotin, E. Z. Kurmaev, and
S. O. Cholakh, J. Exp. Theor. Phys. 115 (6), 1048
(2012).

26. M. G. Kostenko, A. A. Rempel’, and A. V. Lukoyanov,
J. Exp. Theor. Phys. 116 (6), 945 (2013).

27. T. V. Perevalov and A. V. Shaposhnikov, J. Exp. Theor.
Phys. 116 (6), 995 (2013).

28. I. P. Rusinov, I. A. Nechaev, and E. V. Chulkov, J. Exp.
Theor. Phys. 116 (6), 1006 (2013).

29. M. P. Desjarlais, Contrib. Plasma Phys. 45, 300 (2005).

30. M. Gajdo , K. Hummer, G. Kresse, J. Furthmüller,
and F. Bechstedt, Phys. Rev. B: Condens. Matter 73,
045112 (2006).

31. M. French and R. Redmer, Phys. Plasmas 18, 043301
(2011).

32. M. E. Povarnitsyn, D. V. Knyazev, and P. R. Levashov,
Contrib. Plasma Phys. 52, 145 (2012).

33. Y. Ping, D. Rocca, and G. Galli, Phys. Rev. B: Con�
dens. Matter 87, 165203 (2013).

34. P. A. Zhilyaev, G. E. Norman, I. M. Saitov, and
V. V. Stegailov, Dokl. Phys. 58 (7), 277 (2013).

35. N. D. Mermin, Phys. Rev. Sect. A 137, A1441 (1965).

36. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

37. D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).

38. T. R. Mattsson and R. J. Magyar, AIP Conf. Proc. 1195,
797 (2009).

39. R. Del Sole and R. Girlanda, Phys. Rev. B: Condens.
Matter 48, 11789 (1993).

40. A. Starace, Phys. Rev. A: At., Mol., Opt. Phys. 3, 1242
(1971).

41. D. A. Frank�Kamenetskii, Lectures on Plasma Physics
(Atomizdat, Moscow, 1968) [in Russian].

42. H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786
(1959).

43. S. L. Adler, Phys. Rev. 126, 413 (1962).

44. N. Wiser, Phys. Rev. 129, 62 (1963).

45. G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter
47, 558 (1993).

46. G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter
49, 14251 (1994).

47. G. Kresse and J. Furthmüller, Phys. Rev. B: Condens.
Matter 54, 11169 (1996).

48. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov,
G. E. Scuseria, L. A. Constantin, X. Zhou, and
K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

49. S. Nosé, J. Chem. Phys. 81, 511 (1984).

50. W. G. Hoover, Phys. Rev. A: At., Mol., Opt. Phys. 31,
1695 (1985).

51. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.
Lett. 77, 3865 (1996).

52. A. V. Lankin and G. E. Norman, J. Phys. A: Math.
Gen. 42, 214032 (2009).

53. P. Drude, Ann. Phys. 306, 566 (1900).

54. P. Drude, Ann. Phys. 308, 369 (1900).

55. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Volume 8: Electrodynamics of Continuous
Media (Fizmatlit, Moscow, 2005; Butterworth–Heine�
mann, Oxford, 2005).

56. W. Ebeling, Physica (Amstardam) 43, 293 (1969).

57. V. Fortov, V. Gryaznov, V. Mintsev, V. Ya. Ternovoi,
I. L. Iosilevski, M. V. Zhernokletov, and M. A. Mocha�
lov, Contrib. Plasma Phys. 41, 215 (2001).

58. V. E. Fortov, V. Ternovoi, M. V. Zhernokletov,
M. A. Mochalov, A. L. Mikhailov, A. S. Filimonov,
A. A. Pyalling, V. B. Mintsev, V. K. Gryaznov, and
I. L. Iosilevski, J. Exp. Theor. Phys. 97 (2), 259 (2003).

59. M. S. Murillo, J. Weisheit, S. B. Hansen, and
M. W. C. Dharma�wardana, Phys. Rev. E: Stat., Non�
linear, Soft Matter Phys. 87, 063113 (2013).

Translated by I. Nikitin

s

›




