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A B S T R A C T

The graphite melting temperature remains poorly determined despite the considerable

effort accomplished since the work of Bundy (1963) [1]. The absence of a consensus on

its melting temperature at normal conditions has been considered as a technical problem

that motivated more and more sophisticated experiments. The experimental evidences of

the maximum on the graphite melting curve resulted in the liquid–liquid phase transition

hypothesis for liquid carbon. However this hypothesis still requires a sound evidence. In

this work using atomistic methods we focus on the kinetics of graphite melting and show

that the experimental puzzles can be resolved by considering the graphite melting as a pro-

cess in the non-equilibrium superheated solid. The unusually slow melting kinetics results

in the existence of the superheated graphite at the microsecond timescale and thus biases

the measurements of its equilibrium melting temperature.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Graphite is the most refractory single element solid. Despite

its abundance and importance the graphite melting tem-

perature Tm remains a subject of controversy. The variation

of the experimentally measured Tm values is more than

1000 K [1–14] (Fig. 1). In the context of the carbon phase dia-

gram description the graphite melting temperature was once

taken either as 3800 K [15], or as 5000 K [16]. The reviews of

A.I. Savvatimskiy published in 2003 and 2005 [13,17] critically

summarize the results of the three decades of experimental

studies marked by outstanding achievements. The main

polemical discourse of these reviews is connected with

resolving the long-standing discrepancy in the experimen-

tally measured values for the melting temperature of
graphite. The Tm values tend to group in the low tem-

perature and high temperature sets. The experiments based

on pulse electrical discharge or fast laser heating [5,6,8,12–

14] provide the group of the higher values about 4800 K.

The group of lower values of Tm near 4000 K corresponds

to moderate heating rates and is represented by the follow-

ing works [1–4,9,11]. Some works [7,10] give the Tm values in

between. The lower values of the graphite melting tem-

perature have two interpretations: they are either connected

with slow experimental heating rates and assumed to be

more accurate as advocated by [18,19] or explained by the

deficiencies of the measurement procedures and therefore

considered as less accurate [13,17]. A possible existence of

the dependency between the heating rate and the measured

melting temperatures has been briefly discussed before, e.g.
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Fig. 1 – The experimental results on the graphite melting

temperature in two pressure ranges from different

experiments [1–14] (the numbers match the corresponding

citations in the reference list). The data from [3] are shown

as the average line as well as the upper and lower envelope

curves that show the scatter of the individual measurement

results. The results of atomistic calculations for LCBOP-I [36]

and LCBOP-II models [37] are shown as well. (A colour

version of this figure can be viewed online.)

Fig. 2 – The ball-stick models represent two solid–liquid

interface orientations considered in this work. Atoms of

graphene layers are green, liquid-like atoms and sp3–sp3

cross-link defects are shown in red. The melting front

motion with time is illustrated on the plot for different

temperatures. For T ¼ 4600 K the data for two surface

orientations are compared. (A colour version of this figure

can be viewed online.)
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in [18,14,20], but has not obtained much support among the

scientific community.

The pressure dependence of the graphite melting curve

provided an additional puzzle. All of the existing experiments

[1,3,10] indicated that the graphite melting curve had a max-

imum around 5–6 GPa. The interpretation of the maximum is

connected with the possible liquid–liquid phase transition

(LLPT) in liquid carbon similarly to other substances [21,22].

Liquid carbon was studied in the pioneering works at the

dawn of the ab initio molecular dynamics (MD) [23,24] that

provided a certain evidence of the coordination changes in

liquid carbon at 100 GPa and hence supported the LLPT

hypothesis. The equations of state for carbon that reproduced

the LLPT in the graphite melting pressure range were devel-

oped [25,26]. The subsequent ab initio studies of the carbon

phase diagram showed a maximum at the diamond melting

curve but did not confirm the LLPT hypothesis for the corre-

sponding ultrahigh pressures [27,28]. The next equation of

state models for carbon were focused at extreme conditions

[29,30]. Atomistic simulation methods became mature

enough to handle the graphite melting problem as soon as

the sophisticated interatomic potentials for carbon had been

created (AIREBO [31] and LCBOP [32]). However despite consid-

erable effort no confirmation of the LLPT in liquid carbon was

found [33–35]. The pressure dependencies of the graphite

melting temperature calculated for the LCBOP type models

using thermodynamic integration [36,37] are located in the

region 3800–4250 K and display no evidence of the maximum

(see Fig. 1). Therefore the nature of the observed maximum of

the melting curve remains unexplained.

It is well known that solids can not be essentially super-

heated in experiments due to rapid heterogeneous melting

on defects of crystal structure (e.g. [38,39]). Superheating

can be barely detectable in ultrafast experiments [40,41] when

homogeneous nucleation becomes the limiting factor.

Despite this consensus the problems with the graphite

melting temperature determination have motivated us for
the careful study of its melting kinetics in the superheated

solid state that is reported in this work.

2. Melting front propagation (heterogeneous
nucleation)

In our calculations we use the reactive empirical bond-order

potential AIREBO [31]. This model describes both the strong

short-range interatomic interactions within basal (‘‘gra-

phene’’) layers and the weak long-range interaction between

them. We consider the heterogeneous melting at the solid–liq-

uid phase boundary and the homogeneous nucleation of melt

in bulk graphite at high degrees of superheating.

To study the kinetics of heterogeneous process melting

front velocity calculations are carried out using the two-

phase simulation method (e.g. [42–44]). The simulation box

is approximately 20 Åin x and y directions and 120 Åin the z

direction (about 7000 atoms). The 3D periodic boundary con-

ditions (PBC) are applied. LAMMPS is used for MD simulations

[45,46]. Initially atoms of the crystal phase in a part of the

simulation box are kept frozen, while the rest of the system

is heated up to its complete melting. The simulation box is

then equilibrated towards the target temperature and pres-

sure for 0.5 ns. The MD time step is 0.1 fs. After equilibration,

modeling of the melting front propagation is performed in the

NPT ensemble [47]. We consider two variants of the crystal

orientation: the melting front normal to the basal graphite

plane (Fig. 2(?)) and the melting front parallel to the basal

plane (Fig. 2(k)).
In the considered range of temperatures (4100–4700 K) we

observe a steady motion of the phase boundary (Fig. 2). In

all cases the melting front maintains its flat structure. Front

velocities are calculated by linear interpolation. An average



Fig. 3 – The dependence of the melting front velocity vfront (at

different front orientations) and the homogeneous

nucleation rate J on the inverse temperature for different

pressures. The solid lines represent fitting by Eqs. (1) and (2)

(see text). (A colour version of this figure can be viewed

online.)

Fig. 4 – A part of the simulation box with the phase

boundary. Atoms of graphite layers are shown in green,

atoms with other coordinations (disordered structure,

interstitials) are shown in red. (A colour version of this

figure can be viewed online.)
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duration of MD trajectories is about 1 ns depending on

temperature.

The results of the melting front velocity calculations for

various pressures, temperatures and front orientations are

summarized on Fig. 3. At T ¼ 3700–3750 K we do not observe

any unidirectional motion of the phase boundary on the time-

scale up to 5 ns. It is possible to observe the front propagation

for T < 4000 K, however after the careful examination we have

found out that the ambiguity of vfront values at these T is larger

than we estimated preliminary [48]. With the better statistics

than presented in [48] now we cannot resolve any depen-

dence of the melting front velocity on pressure.

Due to the exponential decrease of vfront with temperature

the computational constraints do not allow us to determine

the equilibrium melting point from the condition vfront ¼ 0.

For this purpose we have conducted thermodynamic integra-

tion calculations using the technique proposed in [49], and for

P = 6 GPa obtained Tm ¼ 3640� 150 K . The precision of this

estimate of the equilibrium melting temperature is limited

by the significant basal planes waving with respect to the

immobile reference ‘‘Einstein crystal’’ lattice. This effect dif-

fers from the layer sliding discussed in [37] that we have

similarly overcome by fixing each layer’s center of mass.

The difference between our value of Tm for the AIREBO model

and the result for the LCBOP-II model [37] is about 500 K and

most probably stems from the difference of the potentials.

The kinetics of melting of simple solids is known to be

similar to the crystallization kinetics and is governed by the

average thermal velocity of atoms vth ¼ ð3kBT=mÞ1=2

[50–52,42], i.e. vfront=vth ’ DT=T, where DT ¼ T� Tm. However

we see that the melting front propagation in graphite is very
slow (vfront=vth � 10�4 at DT=T � 0:1) and has a distinct expo-

nential dependence on temperature (Fig. 3). Therefore in this

case we apply the quasi-equilibrium model for the rate of a

first-order phase change [53]:

vfrontðTÞ ¼
akBTD

h
exp

DGm

kBT

� �
� 1

� �
exp �Wf

kBT

� �
; ð1Þ

where kB is the Boltzmann constant, h is the Planck constant.

For the estimate of akBTD=h we take the corresponding Debye

temperatures [54] and lattice distances: TD ¼ 2500 K and

a = 1.23 Å for the (?) orientation and 950 K and 3.35 Å for the

(k) orientation that give the values of (6.4–6.6)104 Å/ns.

DGm ¼ LDT=Tm is the free energy difference between solid

and liquid phases (L = 120 kJ/mol is the heat of fusion). The

only remaining unknown constant Wf is the energy barrier

for the atom ‘‘detachment’’ from solid into liquid. The MD

results fitting with Eq. (1) gives Wf ’ 3:25 eV. A visual inspec-

tion of the ‘‘detachment’’ events reveals their connection with

the formation of the interplanar interstitial-like defects at the

solid side of the melting front (see Fig. 4). The formation ener-

gies from 5.5 to 8.0 eV were obtained in the static ab initio cal-

culations of different interstitial defects in graphite [55]. The

value of Wf is therefore quite reasonable, taking into account

that it corresponds to the high temperature system with

strong thermal fluctuations, basal planes oscillations and

presence of the disordered phase.

The crystallization process is apparently even more slug-

gish than melting. At the MD timescale considered we

observe no crystallization at T < 3700 K .

3. Homogeneous nucleation

The homogeneous nucleation rate in highly metastable states

can be directly calculated via MD method using ensemble

averaging (e.g. [56–58]). We consider a graphite crystal lattice

of 3360 atoms in the cubic MD simulation box (V ’ 303 Å
3
)

in the 3D PBC. Starting with the perfect crystal we follow atom

dynamics in the NPT ensemble [47] for the selected T P 4900 K

temperatures. For each temperature the time tnucl before the

first critical nucleus appears in the simulation box is calculat-

ed as an average over 5–7 trajectories. The corresponding

homogeneous nucleation rate is J ¼ 1=ðtnuclVÞ (Fig. 3). Accord-

ing to the classical nucleation theory (CNT):
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JðTÞ ¼ J0 exp �Wn

kBT

� �
;Wn ¼

16pr3

3ðDGmÞ2
; ð2Þ

where Wn is the free energy of the critical nucleus formation.

In the CNT r stands for the solid–liquid interface energy. Here

we consider r and J0 as unknown parameters and find them

by fitting the MD data (Fig. 3). Our MD calculations show no

evident dependence of J on pressure for 2–12 GPa (as well as

for vfrontðTÞ).

4. Mesoscopic model of graphite melting

Now having the information on the kinetics of two basic

mechanisms of graphite melting we are able to describe

how melting proceeds in macroscopic samples heated at

different heating rates. Experimentally studied graphite spe-

cimens are polycrystallites of different grades. The average

crystallite size essentially varies depending on the manufac-

turing procedure (e.g., according to [17] a typical crystallite

size k in well-prepared HOPG is about 2 lm, in [14] the crystal-

lite size was 10–20 lm).

As the heating of the sample proceeds liquid phase begins

to form at T > Tm via the melting front propagation from grain

boundaries and other types of defects (heterogeneous nucle-

ation). Homogeneous nucleation becomes important in the

course of the specimen heating if an essential part of the spe-

cimen still remains solid at a sufficient superheating degree

DT=Tm � 0:2. Below we propose a model how the volume of

the liquid phase grows in time via both mechanisms depend-

ing on the rate of the specimen heating.

The growth of liquid phase due to melting front propaga-

tion from grain boundaries can be described as
Fig. 5 – The dependence of the graphite melting temperature

detected in experiment on the heating rate. The symbols

meaning is as on Fig. 1 (here red shows electrical and blue

shows laser heating experiments). The solid lines show the

region of Td
mð _TÞ determined by Eq. (5) for the average grain

size k ¼ 2–20 lm. The dashed lines show the region

determined by Eq. (6) for the critical liquid phase fraction

g ¼ 0:01–1. The black curves are our results for AIREBO and

the green curves are our estimates for LCBOP-II (without

data for homogeneous nucleation). The dash-dotted lines

show the graphene melting determined in this work (the

crosses) and in [59]. (A colour version of this figure can be

viewed online.)
dVliq

dt
¼ SðtÞvðTðtÞÞ / ðV0 � VliqÞ2=3vfrontðTðtÞÞ; ð3Þ

where V0 / k3 is the initial crystallite volume, SðtÞ / k2 is the

area of the crystallite surface, t is the time from the moment

temperature Tm has been reached (T ¼ Tm þ _Tt, where _T is the

heating rate). In pulse-heating experiments the beginning of

specimen melting is usually detected by the macroscopic

parameters measurements: e.g. in the electrical heating

experiments the resistance and inserted energy dependencies

on time are recorded, in the laser heating experiments the

time dependence of temperature in the heating zone is

obtained. Noticeable features on such dependencies are inter-

preted as the results of the formation of the significant

amount of liquid as Tm is reached. Considering the possibility

of superheating in this work we distinguish the thermody-

namic melting temperature Tm and the melting temperature

detected in experiments Td
m ¼ Tm þ _Ttm, where tm is a moment

when a detectable amount of liquid phase appears. After

the integration of Eq. (3) from t ¼ 0 to t ¼ tm we get

Z V0

0

dVliq

ðV0 � VliqÞ2=3
¼
Z Td

m

Tm

vfrontðTðtÞÞdt; ð4Þ

and obtain the dependence Td
mð _TÞ in the implicit form

_T ¼ 1
3k

Z Td
m

Tm

vfrontðTÞdT: ð5Þ

The role of the homogeneous nucleation in the growth of

liquid phase becomes comparable to the effects of the hetero-

geneous mechanism at T > 4300–4400 K. Here we take into

account only homogeneous nucleation events and do not

consider the growth of nuclei. This assumption is justified

by the small vfront values and by the fast exponential growth

of JðTÞ with temperature. Integrating Eq. (2) from Tm up to

the moment when the critical fraction of liquid phase g is

reached, we get

_T ¼ Vnucl

g

Z Td
m

Tm

JðTÞdT; ð6Þ

where Vnucl is the critical nucleus volume (that can be estimat-

ed as 1 nm3 according to the MD results). To compensate the

neglection of nuclei growth we consider the wide range of

g ¼ 0:01–1.

The numerical solutions of Eqs. (5) and (6) are shown on

Fig. 5 with the parameters Tm ¼ 3640 K for AIREBO and

Tm ¼ 4250 K for LCBOP-II [37]. One can see that there are two

ranges of heating rates. At _T K 106 K=s melting is determined

by the melting front propagation and temperatures close to

the equilibrium melting temperature Tm are expected to be

detected in experiments. At _T J 108 K=s melting is deter-

mined by homogeneous nucleation and the melting tem-

perature detected in experiments becomes close to the limit of

the single graphene layer stability. Our calculations of the

decay (or melting) temperature for a 4000-atom graphene lay-

er (the black crosses on Fig. 5) match both the Tmð _TÞ zone of

bulk graphite homogeneous melting and the results from [59].

Fig. 5 shows that the model estimates are in a good agree-

ment with the experimental data from the laser and electrical

current heating experiments [1–14].
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5. Discussion

At this moment we cannot establish a ‘‘true’’ equilibrium gra-

phite melting temperature using the classical MD models

only: the difference between the AIREBO and LCBOP-II Tm

values shows the magnitude of the uncertainty due to the

empirical nature of these interatomic potential models. Nev-

ertheless both models show significant variation of Td
m with _T,

comparable to the experimental variation Tm ¼ 3700–5000 K.

The melting temperatures obtained by thermodynamic

integration in the infinite-time approximation are 3640 K for

AIREBO, 3800–4100 K for LCBOP-I [36] and 4250 K for LCBOP-

II [37]). The results of the graphene layer melting temperature

calculations at a constant heating rate are 4900–4950 K for

LCBOP-II [59] and 4800–4900 K for AIREBO (this work).

Therefore the scatter of the measured Tm values can be

explained by the ease of graphite superheating due to its

unusually slow melting kinetics.

The revealed graphite melting kinetics can shed light on

the nature of the maximum of its melting curve (Fig. 1). It is

known that at least in two [1,10] of the three corresponding

experimental studies [1,3,10] the authors used low density

graphite samples (1.6 g/cc). At the length scale of individual

grains the microscopic porosity of the specimen looks like a

microstructure with some empty space between grains. Thus

the initial energy deposition that increases T and P should

simultaneously decrease this empty volume by expanding

the grains. This expansion results in the increase of the inter-

layer spacings between graphite sheets that increases Wf and

slows down melting kinetics. The decrease of microscopic

porosity can explain the rise of the melting temperature Td
m

detected in experiments up to a certain pressure (e.g. 5–6 GPa).

The further increase in pressure results in the increase of

density at the individual grains level that primarily decreases

the interplanar distance in graphite, lowers Wf and hence

lowers Td
m. This explanation does not require an assumption

about a LLPT in liquid carbon and implies that the melting

curve maximum is a kinetic effect that depends on the speci-

men microstructure.
6. Conclusions

Using the molecular-dynamics method we have shown that

melting in graphite proceeds much slower than in other

solids. We have calculated the rates of heterogeneous and

homogeneous melting mechanisms as well as the thermody-

namic melting temperature of graphite and the single gra-

phene layer decay temperature for the AIREBO interatomic

potential. These results combined in a simple mesoscopic

model that takes into account a typical microstructure of gra-

phite specimens, have allowed us to describe a large set of

experimental results on the detected graphite melting tem-

peratures at different heating rates. These results suggest

that at the heating rates higher that �106 K/s graphite speci-

mens in most cases become superheated, the solid–liquid

transition temperature becomes higher than the equilibrium

melting temperature and is influenced mainly by the

specimen microstructure and the energy deposition process.
The slow melting kinetics of graphite together with the pres-

sure and temperature effects on porosity of commonly used

graphite specimens can explain the observed maximum on

the experimentally detected melting temperature depen-

dence on pressure as a kinetic effect without the hypothesis

about a liquid–liquid phase transition in liquid carbon.
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