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Abstract
Using the force-matching method we develop an interatomic potential that allows us to study
the structure and properties of α-U, γ -U and liquid uranium. The potential is fitted to the
forces, energies and stresses obtained from ab initio calculations. The model gives a good
comparison with the experimental and ab initio data for the lattice constants of α-U and γ -U,
the elastic constants, the room-temperature isotherm, the normal density isochore, the
bond-angle distribution functions and the vacancy formation energies. The calculated melting
line of uranium at pressures up to 80 GPa and the temperature of the α–γ transition at 3 GPa
agree well with the experimental phase diagram of uranium.

(Some figures may appear in colour only in the online journal)

1. Introduction

Uranium is a key component of nuclear fuels. For several
decades metallic fuels have been overshadowed by oxide
and ceramic fuels. However, nowadays uranium alloys are
under active investigation as possible fuels for future fast
and research reactors [1–4]. Understanding of the radiation
damage effects on the fuel stability is one of the major
challenges to be solved on the way to effective and safe fuel
design. The description of the radiation damage requires a
knowledge of the atomistic mechanisms of defect generation
in solids [5, 6]. However, they are still not sufficiently studied
for metallic uranium compounds and atomistic models are not
mature enough even for pure U.

Uranium has four possible structures: the orthorhombic
α-U, the tetragonal β-U, the high-temperature bcc γ -U and
liquid. The crystal structure of the low-temperature α-U is
presented in figure 1. At temperature T ∼ 935 K and zero
pressure α-U transforms to β-U, which is stable in a very
small range of pressures and temperatures. At 1045 K β-U
transforms to γ -U, then at 1406 K γ -U melts. Solid α-U
and γ -U allotropes and liquid uranium are of the most
interest because these structures are directly involved in the
technological processes of nuclear fuel operation.

Figure 1. The crystal structure of α-U. Four basis atoms are
marked.

The problem of investigation of the structure and elastic
properties of solid uranium has been previously treated using
density functional theory (DFT) based ab initio calculations.
Söderlind [7] has performed ab initio calculations of the
α-U equilibrium volume and bulk modulus within the all
electron full-potential method. Later Taylor [8] applied
the pseudo-potential developed for uranium by Kresse and
Joubert [9] to calculate structure and elastic moduli of both
α-U and γ -U. In addition, Taylor has obtained the value of
a single vacancy formation energy for the low-temperature
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Figure 2. The EAM potential developed in this work. The potential is determined by three functions (see equation (1)): ϕ is the pair
potential, ρ has a qualitative meaning of an effective electron density that is induced at the given atom by its neighbour atom, F is the
embedding function that introduces many-body effects. The dots represent spline knots.

α-U. Xiang et al [10] have used the same pseudo-potential
to calculate the properties of defects in the U–Nb system
(including a single vacancy in pure uranium). Quantum
molecular dynamics (QMD) simulations of solid and liquid U
in a 54-atom model have been carried out in [11]. The results
of a very detailed study of the possible defect formation in
the solid uranium allotropes have been presented by Beeler
et al [12]; they provided data on the energies of a single
vacancy formation in α-U and γ -U allotropes, as well as the
formation energies of self-interstitials, Zr interstitials and Zr
substitutional defects for the bcc γ -U. First-principles study
of the defect behaviour and diffusion mechanisms in α-U
and α-U–Zr have been carried out in [13]. Landa et al have
performed an ab initio study of γ -U–Mo and γ -U–Zr [14].

One can see that ab initio methods have been successfully
applied to study various properties of solid uranium. However,
the application of these DFT based ab initio techniques is
limited by the maximum computationally possible model size
(∼102 atoms) and time length (of the order of picoseconds).
Such limitations essentially narrow the applicability of ab
initio models for atomistic studies of phase transitions,
plastic deformations, radiation damage etc. It is the classical
molecular dynamics (MD) models that are able to move
atomistic description forward to several orders of magnitude
larger time and length scales. However, the accuracy of
classical MD models is based on the accuracy of the
interatomic potentials deployed. In this respect one can
mention that the radiation damage studies of reactor materials
show relatively more progress in comparison with fuels. The
reason for this is the availability of the accurate interatomic
potentials for iron and other relevant metals (e.g. [15–26]).
The main general requirement to the interatomic potential is
that it should capture all necessary features of the processes
under consideration. For example, a correct description of
the defect energies’ hierarchy is very important for radiation
damage models. If such a potential is at hand, then using
current computational recourses it is possible not only to
access via direct MD nanosecond and sub-micrometre time
and length scales, but to create multiscale models that bridge
the gap between atomistic and kinetic scales (e.g. see [27]
and [28, 29]).

To our knowledge, there exist three published interatomic
potentials for uranium [30–33]. All of them are developed

as central-force many-body potentials [34–38] commonly
referred to as embedded atom method (EAM) potentials [34,
35]. This type of many-body potential is widely used
for simulating the interatomic interactions in metals. In
this framework the potential energy of the system can be
represented as follows:

U =
∑
i<j

ϕ(rij)+
∑

j

F(ρ̄j), ρ̄j =
∑
j6=i

ρ(rij). (1)

This is an empirical model that has only qualitative physical
justification based on first principles. The typical shapes of the
functions in equations (1) are shown in figure 2. Qualitatively
one can consider the first term as a sum of pair potentials ϕ
over all atom pairs in the system (rij is the distance between
atoms i and j). ρ̄ is an effective electron density that is induced
by the neighbouring atoms at the given atom (ρ gives a
contribution from each neighbour). Both functions ϕ and ρ are
short-ranged and in many EAM models go to zero at the same
cut-off radius. A non-linear embedding function F introduces
many-body effects. The curvature of F allows us to describe
the lowering of the energy of a given atom when the number
of its neighbours increases. This is impossible to do using only
pair potentials but crucially important for modelling metallic
bonding [34–38].

The construction of the above-mentioned potentials for
U [30–33] was based on simple analytical forms of the ϕ,
ρ and F functions. The potential of Pascuet et al [30, 31]
was fitted to the lattice constants, the equilibrium atomic
volume, the bulk modulus and the cohesion energy of
α-U. The embedding function F was obtained from the
universal features of the equation of state of metals. This
potential describes α-U at normal conditions and qualitatively
reproduces α-to-γ transition.

The potential developed by Belashchenko et al [32] was
fitted to the data on the structure of liquid uranium in the
vicinity of the melting temperature and to the results of high
pressure impact tests. It gives an accurate description of the
thermophysical properties of liquid uranium and bcc γ -U.
The calculated density, self diffusion coefficient of the liquid
phase and the melting line are all in good agreement with the
experimental data. However this potential is not suitable for
low-temperature α-U.
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The potential of Li et al [33] was fitted to the ab initio
results on the U2 dimer energies, the fcc lattice constant
and several other energetic and elastic properties of different
structures. Liquid U properties were not considered. Only
limited data on the accuracy of this potential were presented
in [33].

Therefore none of the existing potentials describes
simultaneously the properties of α-, γ -and liquid uranium
and the corresponding transitions at the acceptable level of
accuracy in a wide range of pressures and temperatures. Such
a potential is the goal of this work.

2. Construction of the potential

The development of the ab initio DFT methods made it
possible to include the ab initio data into the fitting database
for potential parameter tuning. Initially ab initio data only
supplemented the experimental data. In recent years, however,
the interatomic potential fitting has tended to rely exclusively
on the ab initio results. Probably the first completely ab initio
based approach for potentials’ development was originally
proposed by Ercolessi and Adams [39] and called the
force-matching method. In the recent work of Fellinger et al
on Nb [40] a very detailed explanation of this method was
given. Two authors of this work have recently constructed
an EAM potential for Mo using the same technique [28].
In the force-matching method the whole developing process
is divided into two stages. First the reference database is
built. This reference database contains ab initio values of
atomic forces, energies and stresses calculated for various
atomic structures (so-called configurations). At the second
stage the optimization of the EAM potential is performed. It
is required to minimize the deviations between the reference
ab initio values of forces, energies and stresses and their EAM
approximations. The iterative minimization process results in
a potential that reproduces the reference data with the best
accuracy. We use the force-matching method as described
below.

2.1. The reference database

For computation of the reference database we need to create
a set of reference structures. These structures represent α-U,
γ -U and liquid uranium at different densities. Each reference
structure contains about 120 atoms in a simulation box with
the periodic boundary conditions in all three dimensions
(3D PBC). For each of these structures we perform a
short (∼1 ps) MD-run with the trial potential [32] and at
the given temperature T . This way we introduce thermal
displacements of atoms the magnitudes of which reflect
the given temperature. The final atomic arrangement after
the MD calculation for a given initial structure is one of
the required configurations. Classical MD calculations are
performed using the LAMMPS code [41].

Then we perform ab initio DFT calculations of reference
forces, per atom energies and stress tensors for each
configuration using the plane-wave code VASP [42]. To
represent the inner electronic structure of uranium we adopt

Table 1. The configurations database. The configurations represent
various uranium structures under different conditions. N is the
number of atoms in each configuration. The V/V0 column lists the
ratio of the given atomic volume V to the equilibrium experimental
volume V0 of α-U, γ -U [49, 54] and liquid U [32]. The T column
lists the temperature value corresponding to the particular
configuration. The 1 column lists the average fitting errors for the
forces obtained with the resulting EAM potential (see equation (2)).

Configuration Structure N V/V0 T (K) 1 (%)

1 α-U 120 1.000 900 0.41
2 120 1.000 770 0.41
3 120 1.004 850 0.40
4 120 1.060 990 0.38
5 120 1.000 1300 0.44
6 120 0.940 1200 0.37
7 120 0.902 1600 0.25
8 120 0.850 1600 0.24
9 120 0.827 1700 0.26
10 120 0.827 1100 0.34
11 120 0.902 550 0.35
12 120 1.000 372 0.27
13 120 0.941 340 0.24
14 120 1.061 390 0.27
15 γ -U 128 1.024 1140 0.46
16 128 0.988 1230 0.36
17 128 0.904 2100 0.28
18 128 0.772 3000 0.20
19 128 0.813 2300 0.21
20 128 0.787 2000 0.18
21 128 0.944 1550 0.29
22 128 0.847 1900 0.23
23 128 0.760 3100 0.20
24 128 0.825 1925 0.20
25 liquid U 54 1.293 4300 0.56
26 54 1.448 3077 1.30
27 128 0.934 4000 0.29
28 128 0.769 3740 0.16
29 128 0.934 5760 0.23
30 128 0.679 5140 0.15
31 128 0.748 4700 0.14
32 128 0.790 4000 0.20
33 128 0.734 5900 0.15
34 54 1.293 3417 1.10

a projector-augmented wave pseudo-potential developed by
Kresse and Joubert [9] and previously used by Taylor [8].
The Perdew–Wang 91 exchange correlation functional [43]
is also applied. We set the basis plane-wave energy cut-off
equal to 500 eV. According to the symmetry of the structures
studied we use the following k-point meshes: 3 × 1 × 2 for
α-U configurations and 2× 2× 2 for γ -U and liquid U. These
energy cut-offs and meshes provide converged DFT energies,
forces and stresses.

The complete reference database contains 12 054 values
of force components, 34 values of the per atom energy and 204
components of the stress tensor. The list of all configurations
of the fitting database is given in table 1.

2.2. Fitting of the potential to the DFT reference data

The trial functions ϕ, ρ and F are chosen in the form of
cubic splines. The spline knots are adjusted in an iterative
way for minimizing the deviations between the reference
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Table 2. The resulting knots of the cubic splines defining the EAM potential. For the pair potential ϕ and the electronic density function ρ
19 knots were adjusted. The embedding function F(ρ̄j) is determined by ten knots (the last two columns).

n rij (Å) ϕ(rij) (eV) ρ(rij) ρ̄j F(ρ̄j) (eV)

1 1.900 00 7.548 735 419 793 804 800 0.544 865 689 913 06 0.000 000 0.000 000 000 0000
2 2.127 77 3.027 262 284 620 461 300 0.262 383 777 458 72 0.075 017 −1.421 087 439 9504
3 2.355 55 0.932 256 757 441 457 200 0.158 804 074 772 49 0.190 640 −2.467 504 899 3797
4 2.583 33 0.241 865 209 658 825 880 0.103 490 323 489 83 0.306 263 −3.000 002 974 6112
5 2.811 11 −0.052 129 863 767 814 630 0.059 342 523 272 80 0.421 886 −3.240 883 065 4253
6 3.038 88 −0.234 471 524 509 781 090 0.031 902 062 136 11 0.537 509 −3.246 575 553 2375
7 3.266 66 −0.293 405 670 917 844 590 0.020 235 827 273 83 0.653 132 −3.112 401 064 7774
8 3.494 44 −0.252 497 357 178 855 960 0.015 146 623 921 70 0.768 754 −2.857 330 979 8021
9 3.722 22 −0.191 608 768 374 650 930 0.010 847 478 961 64 0.884 377 −2.505 042 439 2625
10 3.950 00 −0.120 662 870 486 473 710 0.010 511 579 029 66 1.000 000 −1.982 300 583 9202
11 4.177 77 −0.042 920 121 382 967 677 0.005 488 387 664 27
12 4.405 55 −0.005 607 540 432 113 615 −0.002 039 192 143 85
13 4.633 33 0.013 340 387 444 210 934 −0.004 896 963 138 58
14 4.861 11 0.032 297 818 096 560 113 −0.005 337 327 018 87
15 5.088 88 0.042 144 521 168 244 332 −0.004 276 624 061 33
16 5.316 66 0.035 553 638 079 349 650 −0.004 595 188 524 57
17 5.544 44 0.014 891 148 455 440 949 −0.004 051 151 490 15
18 5.772 22 −0.004 642 055 500 075 333 −0.002 776 552 191 69
19 6.000 00 0.000 000 000 000 000 000 0.000 000 000 000 00

database values and the respective values calculated with
the EAM potential. This operation is conducted by the code
potfit [44, 45]. Then the resulting potential is verified by
the test MD calculations of the structure and properties of
uranium. Several test properties are compared with the known
experimental data. If the agreement is not sufficient we modify
the database structures (add or remove configurations, change
their ‘statistical weights’ in the minimization scheme etc).
Then we repeat the potential generation procedure once more.
The optimized cubic splines representing the final potential
functions ϕ, ρ and F are shown in figure 2. Table 2 presents
the final values of the spline knots for all these functions 4.
We determine the average fitting errors for the forces in each
reference configuration:

1 =
1
N

N∑
i=1

√√√√ (Fi
EAM − Fi

DFT)
2

(Fi
DFT)

2 , (2)

here N is the number of atoms in a given configuration, FEAM
is an EAM force, FDFT is a reference DFT force.

From table 1 it can be seen that for all configurations
consisting of 120–128 atoms the values of the errors are
about 15–40% (depending on the uranium structure). For
the high-temperature rarefied liquid configurations (with 54
atoms in a simulation box) fitting errors are more than 120%.
The reason for such significant errors is that the cut-off radius
of the potential (6 Å) is obviously insufficient for modelling
highly expanded uranium.

3. Properties of solid uranium

To verify the potential we carry out MD calculations of the
structural, mechanical and thermodynamic properties of the

4 The potential in the LAMMPS setfl format is available at www.ihed.ras.ru/
norman/files/U.eam.sss.

solid structures of uranium and address its phase diagram.
Each of these models consists of 2000 atoms in 3D PBC.
Additionally we examine the vacancy formation energies in
α-U and γ -U.

3.1. Structure and elastic properties

We calculate the lattice parameters at zero pressure, the bulk
modulus and other elastic constants of α-U and γ -U with the
developed potential. The results are summarized in table 3.
The elastic constants cij are calculated from MD simulations
of uniaxial compression of solid α-U. The stress components
change with deformation in a linear way (see figure 3).
The elastic constants can be determined as follows (in Voigt
notation):

cij =
1σjj

εii
, (3)

where 1 σjj is the change in the stress component along the
j-axis providing that the model size l0i is slightly decreased
and the corresponding deformation is:

εii =
1li
l0i
. (4)

The bulk modulus is determined from MD simulations of
uniform compression and expansion with respect to the
equilibrium volume:

B = −V0
1P

1V
. (5)

Here V0 is the equilibrium volume of the solid (at T ∼ 300 K
for α-U and at the T ∼ 900 ◦C for γ -U). The corresponding
‘pressure–volume’ dependence is a linear function of volume.
The presented values of the bulk modulus are obtained in the
range of1V/V0 ∼ 0.5–6%. The elastic constants and the bulk
modulus of α-U are within 10–30% of the experimental data.
The errors are larger for c12 and c13.

4

www.ihed.ras.ru/norman/files/U.eam.sss
www.ihed.ras.ru/norman/files/U.eam.sss
www.ihed.ras.ru/norman/files/U.eam.sss
www.ihed.ras.ru/norman/files/U.eam.sss
www.ihed.ras.ru/norman/files/U.eam.sss
www.ihed.ras.ru/norman/files/U.eam.sss
www.ihed.ras.ru/norman/files/U.eam.sss
www.ihed.ras.ru/norman/files/U.eam.sss
www.ihed.ras.ru/norman/files/U.eam.sss
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Table 3. The EAM values of the lattice constants (a, b and c are presented in Å, y is given as a relative dimensionless value representing a
fraction of b). The atomic volume (in Å

3
), the bulk modulus (GPa), the elastic constants (GPa) and the cohesive energy (eV) of solid

uranium structures are shown in comparison with the previous DFT based results and experimental data. The experimental values
correspond to T = 300 K for α-U and ∼900 K for γ -U. MD calculations are performed at the same temperatures.

EAM, this work Ab initio [7] Ab initio [8] Experiment [49, 54]

α-U

a 2.8361 2.845 2.800 2.8537
b 5.7604 5.818 5.896 5.8695
c 4.9551 4.996 4.893 4.9548
y 0.1015 0.103 0.097 0.1025
Vat

0 20.238 20.674 20.194 20.747
Ecoh −4.20 — — −4.22 [55]
c11 151 300 296 215
c22 218 220 216 199
c33 330 320 367 267
c12 109 50 60 46
c13 130 5 29 22
c23 108 110 141 108
B 149 133 149 135.5

γ -U

a 3.493 — 3.430 3.470
Vat

0 21.309 — 20.180 20.890
B 95.0 — 176.0 113.3

Figure 3. Changes of the components of stress tensor as a function
of the compressing deformation ε (with the indication of the
corresponding elastic constants): 1—changes in σzz, compression
along the z-axis (gives c33); 2—σyy, compression along the y-axis
(c22); 3—σxx, compression along the x-axis (c11); 4—σzz,
compression along the x-axis (c13); 5—σzz, compression along the
y-axis (c23); 6—σyy, compression along the x-axis (c12).

3.2. The normal density isochore of α-U

As another test we study the behaviour of the low-temperature
orthorhombic α-U under isochoric heating. The obtained
‘pressure–temperature’ dependence compares well with the

Figure 4. The normal density V = V0 isochore of α-U:
1—experimental data [46]; 2—result of MD calculations with the
potential obtained.

experimental data [46] (see figure 4). The mean thermal
displacements of uranium atoms are not the same for different
directions in α-U. The largest value is observed along the
a-axis where the atoms are arranged closer to each other.
This is consistent with the results of the diffraction study of
anisotropy of thermal displacements in solid uranium [47].

3.3. The room-temperature isotherm of α-U

The uranium room-temperature isotherm is calculated in
two different ways. First we carry out several independent
calculations at the given V/V0 ratios maintaining all stress

5
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Figure 5. The room-temperature isotherms of α-U:
1—experimental data obtained with DAC [48, 49]; 2—results of
MD calculations at σxx = σyy = σzz = P; 3—results obtained from
the MD simulation of the uniform compression.

components equal to pressure P (σxx = σyy = σzz = P). While
V/V0 is no less then 0.8 the EAM isotherm is in good
agreement with the diamond anvil cell (DAC) experiments,
but during further compression the calculated curve becomes
somewhat higher than the experimental one. As a second
variant, a continuous uniform compression of the α-U is
simulated. This approach does not allow us to keep all
pressure components equal and the crystal structure deforms
during the simulation. When V/V0 = 0.8 the difference
between σxx and σzz becomes larger than ∼20 GPa and the
deformation of the lattice becomes irreversible. It can be
noticed from figure 5 that the ‘pressure–volume’ dependence
obtained for this irreversibly deformed uranium during further
compression is consistent with the experimental data [48, 49].

3.4. Bond-angle distribution functions for solid and liquid
uranium

In order to understand how the potential reproduces the
structure of solid and liquid U we calculate bond-angle
distribution functions for several temperatures and compare
them with the existing results of QMD simulations [11].
The bond-angle distribution function represents the number
of bond angles that the given atom makes with its nearest
neighbours. To define what atoms can be considered to be
the nearest neighbours for the given atom we set the cut-off
radius of 3.9 Å (equal to the value suggested in [11]). To
perform the comparison we build two models of bcc U at low
(330 K) and high (1680 K) temperatures as well as a model of
liquid uranium at 2150 K. Each model has an atomic volume
of 20.45 Å

3
/atom. The resulting distributions are compared

with the QMD data in figure 6. For each case one can see a
good agreement between these two data sets. At 330 K the
initial bcc U lattice becomes strongly distorted into a bct-like
structure as was shown in [11] (γ -to-α transition is hindered
due to the small system size).

Table 4. The energy of a single vacancy formation in α-U (eV).

EAM
MD [31] ab initio [8] ab initio [12]

EAM, this
work

1.50 1.95 1.86 2.14

Table 5. The energy of a single vacancy formation in γ -U (eV).

EAM
MD [31]

ab
initio [10]

ab
initio [12] Expt. [56]

EAM, this
work

1.75 1.08 1.384 1.20± 0.25 1.52

3.5. Energy of a single vacancy formation

A proper description of defect formation in the solid state
is crucial for radiation damage studies. That is why a single
vacancy formation energy is an important basic test of the new
potential. This energy is determined as follows:

Ef
vac = EN−1 −

N − 1
N

EN . (6)

Here N is the number of atoms in the model of the ideal
crystal lattice without vacancies. EN is the energy of this
ideal lattice and EN−1 corresponds to the model that contains
a single vacancy. We perform structural relaxations for the
models of perfect single crystal uranium with and without a
single vacancy for determination of the corresponding energy
values. The α-U model contains 5200 atoms in the simulation
box with 3D PBC. For γ -U we use 250 atoms and the
structural relaxation is performed only for a part of the system
in order to overcome spontaneous bcc lattice distortion at
low temperatures [12]. The results obtained for both solid
structures of uranium are presented in tables tables 4 and
5. For α-U the experimental value of the vacancy formation
energy is known while for γ -U it was only estimated by the
DFT method.

4. Melting and α–γ transition

We calculate the melting line and the temperature of the α–γ
transition at the given pressure. In both cases we use the
two-phase simulation technique (e.g. see [50–53]). Fragments
of the simulation boxes are presented in figure 7.

The simulations are performed in 3D PBC. One part
of the box is filled by the bcc lattice of uranium atoms
and another part is filled with liquid uranium. The total
number of atoms is 20 250. The algorithm of the calculation
includes equilibration of the system at the given pressure for
∼50 ps. Depending on the temperature and pressure the phase
boundary can move or remain stable. In the latter case both
phases coexist in equilibrium, which gives the value of the
melting temperature at the given pressure.

The structure of the simulation box used for the
calculation of the solid–solid α–γ transition is shown in
figure 7(b). The algorithm of the calculation remains the same
as described above for melting. The model contains 16 800

6
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Figure 6. Bond-angle distribution functions g3(θ) calculated with the EAM potential developed in the present work in comparison with the
QMD results [11]. At 330 K the initial bcc γ -U lattice is strongly distorted into a bct-like structure.

Figure 7. Fragments of the two-phase simulation boxes: the phase
boundary between liquid and bcc γ -U solid (a) and the boundary
between α-U and γ -U (b). γ -U is on the right. Projections of all
atoms in the simulation box on a plane are presented in both
pictures; arrows show the orientation of the α-U lattice.

atoms in 3D PBC. The time length of the MD simulation is
about 10 ns. To exclude the possible effects of the β-U we
study a compressed system at 3 GPa. When the temperature
is lower than 800 K the growth of the low-temperature α-U
is observed. At T > 800 K α-U transforms to γ -U. At 800 K
these two allotropes coexist in equilibrium. Therefore we can
estimate that the temperature of the α–γ transition at 3 GPa
is about 800± 50 K, which agrees well with the experimental
value.

All the calculated results are presented in figure 8 in
comparison with the results of the in situ DAC x-ray/laser-
heating experiments [49].

5. Conclusion

Using the force-matching method we developed a new
interatomic EAM potential for uranium aimed at simulation
of α-U, γ -U and liquid uranium, the corresponding transitions
between them as well as the radiation damage. The results of

Figure 8. The P–T phase diagram of uranium. The experimental
results [49] are shown by the solid line (the melting curve) and the
dashed line (the α–γ transition curve); the melting curve calculated
with the EAM potential is shown by the stars; the calculated
temperature of the α–γ transition at 3 GPa is marked by a triangle.

the performed MD test calculations confirm that it is possible
to obtain a good quantitative description of the structure and
properties of the solid uranium allotropes using a relatively
simple EAM model. The lattice constants, bulk modulus,
bond-angle distribution functions, the room-temperature
isotherm, normal density isochore and the single vacancy
formation energy for α and γ structures computed using this
potential agree well with the reported experimental and ab
initio data. The calculated melting line of uranium at pressures
up to 80 GPa and the temperature of the solid–solid α–γ
transition at 3 GPa are both in good agreement with the
experimental data. Hence this new EAM uranium potential
provides an overall quantitative description of the properties
of liquid and solid uranium at pressures from 0 to 80 GPa and
temperatures up to 2500 K.
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